Skip to main content
Log in

Enhancing the Thermoelectric Performance of Cu2S/CuO Nanocomposites Through Energy-Filtering effect and Phonon Scattering

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Recently, thermoelectric (TE) materials have seized great attention for their role in clean energy conversion applications. Cu2S are p-type super-ionic conductors featuring a narrow band gap of 1.7 eV while exhibiting outstanding thermoelectric characteristics. The Cu2S matrix and the CuO nanoinclusions were successfully synthesized via solvothermal and hydrothermal routes, respectively. The morphological observations made through scanning and transmission electron microscope ensured the homogeneous distribution of CuO nanoinclusions in the Cu2S matrix, hence, the formation of standard Cu2S/CuO composites. In this work, we have introduced a “combined strategy” to boost the figure of merit (zT). The Seebeck coefficient reached the maximum of 271.86 μVK−1 at 573 K for the 20 wt% CuO sample (a 71.45% gain when compared to the pure Cu2S) owing to the filtration of low-energy carriers at the CuO potential barriers (2.5 eV). The Cu2S/20 wt% CuO sample achieved the minimum thermal conductivity values. At 573 K, We recorded a vast power factor value of 952.66 μWm−1 K−2 (32.23% gain) for the Cu2S/15 wt% CuO sample. These values are vastly higher than previously reported for the copper sulfides-based TE materials. Consequently, an optimised zT value of 0.44 (214.29% gain) was accomplished for the Cu2S/15 wt% CuO sample at 573 K. The strategy presented in our study can also be extended to other TE materials, especially for the promising copper chalcogenides to improve their zT values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. (World Scientific, 2011), pp.101–110

    Google Scholar 

  2. Z.-G. Chen et al., Nanostructured thermoelectric materials: current research and future challenge. Prog. Nat. Sci. Mater. Int. 22(6), 535–549 (2012)

    Article  Google Scholar 

  3. Y. Pei et al., Stabilizing the optimal carrier concentration for high thermoelectric efficiency. Adv. Mater. 23(47), 5674–5678 (2011)

    Article  CAS  PubMed  Google Scholar 

  4. C. Zhao et al., Defects engineering with multiple dimensions in thermoelectric materials. Research. 2020, 9652749 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. T.M. Tritt, Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 41(1), 433–448 (2011)

    Article  CAS  Google Scholar 

  6. X. Zhang, L.-D. Zhao, Thermoelectric materials: energy conversion between heat and electricity. J. Materiomics 1(2), 92–105 (2015)

    Article  Google Scholar 

  7. H. Mamur et al., A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew. Sustain. Energy Rev. 82, 4159–4169 (2018)

    Article  CAS  Google Scholar 

  8. G. Ding et al., High thermoelectric properties of n-type Cd-doped PbTe prepared by melt spinning. Scr. Mater. 122, 1–4 (2016)

    Article  Google Scholar 

  9. G. Zheng et al., Toward high-thermoelectric-performance large-size nanostructured BiSbTe alloys via optimization of sintering-temperature distribution. Adv. Energy Mater. 6(13), 1600595 (2016)

    Article  Google Scholar 

  10. B. Ge et al., Atomic level defect structure engineering for unusually high average thermoelectric figure of merit in n-type pbse rivalling PbTe. Adv. Sci. (Weinh). 9, 2203782 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. H. Liu et al., Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1-xIx. Adv. Mater. 25(45), 6607–6612 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. W.D. Liu et al., Promising and eco-friendly Cu2X-based thermoelectric materials: progress and applications. Adv. Mater. 32(8), 1905703 (2020)

    Article  CAS  Google Scholar 

  13. K. Zhao et al., Recent advances in liquid-like thermoelectric materials. Adv. Funct. Mater. 30(8), 1903867 (2020)

    Article  CAS  Google Scholar 

  14. C. Coughlan et al., Compound copper chalcogenide nanocrystals. Chem. Rev. 117(9), 5865–6109 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. M. Bouroushian, Chalcogens and metal chalcogenides, in electrochemistry of metal chalcogenides (Springer, 2010), pp.1–56

    Book  Google Scholar 

  16. J.B. Rivest et al., Size dependence of a temperature-induced solid–solid phase transition in copper (I) sulfide. J. Phys. Chem. Lett. 2(19), 2402–2406 (2011)

    Article  CAS  Google Scholar 

  17. W.R. Cook, Phase changes in Cu2S as a function of temperature (National Bureau of Standards, 1972)

    Google Scholar 

  18. K. Okamoto, S. Kawai, Electrical conduction and phase transition of copper sulfides. Jpn. J. Appl. Phys. 12(8), 1130 (1973)

    Article  CAS  Google Scholar 

  19. D. Singh, R. Ahuja, Dimensionality effects in high-performance thermoelectric materials: computational and experimental progress in energy harvesting applications. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12(1), e1547 (2022)

    Article  CAS  Google Scholar 

  20. G. Dennler et al., Are binary copper sulfides/selenides really new and promising thermoelectric materials? Adv. Energy Mater. 4(9), 1301581 (2014)

    Article  Google Scholar 

  21. R. Potter, An electrochemical investigation of the system copper-sulfur. Econ. Geol. 72(8), 1524–1542 (1977)

    Article  CAS  Google Scholar 

  22. G. Will, E. Hinze, A.R.M. Abdelrahman, Crystal structure analysis and refinement of digenite, Cu1. 8S, in the temperature range 20 to 500 C under controlled sulfur partial pressure. Eur. J. Mineral. 14(3), 591–598 (2002)

    Article  CAS  Google Scholar 

  23. H.T. Evans, The crystal structures of low chalcocite and djurleite. Zeitschrift für Kristallographie-Crystalline Materials 150(1–4), 299–320 (1979)

    CAS  Google Scholar 

  24. K. Koto, N. Morimoto, The crystal structure of anilite. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 26(7), 915–924 (1970)

    Article  CAS  Google Scholar 

  25. V.I. Klimov, V.A. Karavanskii, Mechanisms for optical nonlinearities and ultrafast carrier dynamics in Cu x S nanocrystals. Phys. Rev. B 54(11), 8087 (1996)

    Article  CAS  Google Scholar 

  26. S. Goel, F. Chen, W. Cai, Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small 10(4), 631–645 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. Q. Zhang et al., CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208–337 (2014)

    Article  CAS  Google Scholar 

  28. Y. Wang et al., Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties. Appl. Surf. Sci. 317, 414–421 (2014)

    Article  CAS  Google Scholar 

  29. S. Wang et al., A CuO nanowire infrared photodetector. Sens. Actuators A Phys. 171(2), 207–211 (2011)

    Article  CAS  Google Scholar 

  30. K.J. Choi, H.W. Jang, One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors 10(4), 4083–4099 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. N. Salah et al., Nanocomposites of CuO/SWCNT: promising thermoelectric materials for mid-temperature thermoelectric generators. J. Eur. Ceram. Soc. 39(11), 3307–3314 (2019)

    Article  CAS  Google Scholar 

  32. G.A. Slack, New materials and performance limits for thermoelectric cooling, in CRC handbook of thermoelectrics. (CRC Press, 2018), pp.407–440

    Google Scholar 

  33. H. Li et al., High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94, 102114–102114 (2009)

    Article  Google Scholar 

  34. W. Xie et al., Simultaneously optimizing the independent thermoelectric properties in (Ti, Zr, Hf)(Co, Ni) Sb alloy by in situ forming InSb nanoinclusions. Acta Mater. 58(14), 4705–4713 (2010)

    Article  CAS  Google Scholar 

  35. W. Liu et al., Recent advances in thermoelectric nanocomposites. Nano Energy 1(1), 42–56 (2012)

    Article  CAS  Google Scholar 

  36. J. Zide et al., High efficiency semimetal/semiconductor nanocomposite thermoelectric materials. J. Appl. Phys. 108(12), 123702 (2010)

    Article  Google Scholar 

  37. L. Chen, Y.-B. Chen, L.-M. Wu, Synthesis of uniform Cu2S nanowires from Copper− thiolate polymer precursors by a solventless thermolytic method. J. Am. Chem. Soc. 126(50), 16334–16335 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. T. Ohtani et al., Synthesis of binary copper chalcogenides by mechanical alloying. Mater. Res. Bull. 30(12), 1495–1504 (1995)

    Article  CAS  Google Scholar 

  39. Y. Wang et al., One-pot synthesis and optical property of copper (I) sulfide nanodisks. Inorg. Chem. 49(14), 6601–6608 (2010)

    Article  CAS  PubMed  Google Scholar 

  40. Y. Zhang et al., Electronic structure of antifluorite Cu2X (X= S, Se, Te) within the modified Becke-Johnson potential plus an on-site Coulomb U. J. Chem. Phys. 140(7), 074702 (2014)

    Article  PubMed  Google Scholar 

  41. L. Mi et al., Large-scale urchin-like micro/nano-structured NiS: controlled synthesis, cation exchange and lithium-ion battery applications. RSC Adv. 3(38), 17431–17439 (2013)

    Article  CAS  Google Scholar 

  42. Y. Zhang et al., Effect of ether electrolyte on the electrochemical performance of Cu2S. Int. J. Electrochem. Sci. 15, 2903–2912 (2020)

    Article  CAS  Google Scholar 

  43. J.V. Lima et al., Synthesis and characterization of Cu2–xS structures by different chemical routes for electronic applications. Mater. Res. 24, e20210018 (2021)

    Article  Google Scholar 

  44. K. Nemade, S. Waghuley, LPG sensing performance of CuO–Ag2O bimetallic oxide nanoparticles. St. Petersb. Polytech. Univ. J. Phys. Math. 1(3), 249–255 (2015)

    Google Scholar 

  45. H. Bao et al., Crystal-plane-controlled surface restructuring and catalytic performance of oxide nanocrystals. Angew. Chem. 123(51), 12502–12506 (2011)

    Article  Google Scholar 

  46. D. Chen et al., Hot-injection synthesis of Cu-doped Cu2ZnSnSe4 nanocrystals to reach thermoelectric zT of 0.70 at 450 C. ACS Appl. Mater. Interfaces 7(44), 24403–24408 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. K. Kumar Choudhary et al., Phonon scattering mechanism for size-dependent thermoelectric properties of Bi2Te3 nanoparticles. ChemistrySelect 7(34), e202202503 (2022)

    Article  CAS  Google Scholar 

  48. A.B. Devi et al., Novel synthesis and characterization of CuO nanomaterials: Biological applications. Chin. Chem. Lett. 25(12), 1615–1619 (2014)

    Article  CAS  Google Scholar 

  49. N. Tamaekong, C. Liewhiran, S. Phanichphant, Synthesis of thermally spherical CuO nanoparticles. J. Nanomater. 2014, 507978 (2014)

    Article  Google Scholar 

  50. U.A. Joshi, P.A. Maggard, CuNb3O8: a p-type semiconducting metal oxide photoelectrode. J. Phys. Chem. Lett. 3(11), 1577–1581 (2012)

    Article  CAS  PubMed  Google Scholar 

  51. A. Pop et al., Optical properties of cuxs nano-powders. Chalcogenide Lett. 8(6), 363–370 (2011)

    CAS  Google Scholar 

  52. X. Yu, X. An, Controllable hydrothermal synthesis of Cu2S nanowires on the copper substrate. Mater. Lett. 64(3), 252–254 (2010)

    Article  CAS  Google Scholar 

  53. S. Fu et al., Enhanced photo-electrochemical activity of ZnO/Cu2S nanotube arrays photocathodes. Int. J. Hydrog. Energy 46(21), 11544–11555 (2021)

    Article  CAS  Google Scholar 

  54. D. Han et al., Engineering charge transfer characteristics in hierarchical Cu2S QDs@ ZnO nanoneedles with p–n heterojunctions: towards highly efficient and recyclable photocatalysts. Nanomaterials 9(1), 16 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  55. P. Zhang, L. Gao, Copper sulfide flakes and nanodisks. J. Mater. Chem. 13(8), 2007–2010 (2003)

    Article  CAS  Google Scholar 

  56. M. Singh, A. Singhal, Modeling of shape and size effects for the band gap of semiconductor nanoparticles, in 2018 2nd International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE). (IEEE, 2018), pp.10–15

    Google Scholar 

  57. S. Ahmad et al., Electronic and optical properties of semiconductor and alkali halides. Arab. J. Sci. Eng. 38(7), 1889–1894 (2013)

    Article  CAS  Google Scholar 

  58. W.A.A. Alhassan, I.A. Wadi, Determination of optical energy gap for copper oxide at different temperatures. Int. J. Adv. Eng. Res. Sci. 5(3), 237422 (2018)

    Article  Google Scholar 

  59. T. Hong et al., Enhanced thermoelectric performance in SnTe due to the energy filtering effect introduced by Bi2O3. Mater. Today Energy 25, 100985 (2022)

    Article  CAS  Google Scholar 

  60. X. Zhang et al., Spontaneously promoted carrier mobility and strengthened phonon scattering in p-type YbZn2Sb2 via a nanocompositing approach. Nano Energy 43, 159–167 (2018)

    Article  CAS  Google Scholar 

  61. A. Putnis, The transformation behaviour of cuprous sulphides and its application to the efficiency of CuxS–CdS solar cells. Philos. Mag. 34(6), 1083–1086 (1976)

    Article  Google Scholar 

  62. P. Lukashev et al., Electronic and crystal structure of Cu 2–x S: full-potential electronic structure calculations. Phys. Rev. B 76(19), 195202 (2007)

    Article  Google Scholar 

  63. R. Venkatasubramanian, Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61(4), 3091 (2000)

    Article  CAS  Google Scholar 

  64. Z. Xiong et al., Solution-processed CdS/Cu2S superlattice nanowire with enhanced thermoelectric property. ACS Appl. Mater. Interfaces 9(38), 32424–32429 (2017)

    Article  CAS  PubMed  Google Scholar 

  65. G. Mahan, J. Sofo, M. Bartkowiak, Multilayer thermionic refrigerator and generator. J. Appl. Phys. 83(9), 4683–4689 (1998)

    Article  CAS  Google Scholar 

  66. Z. Zhang et al., Thermoelectric properties of multi-walled carbon nanotube-embedded Cu2S thermoelectric materials. J. Mater. Sci. Mater. Electron. 30(5), 5177–5184 (2019)

    Article  CAS  Google Scholar 

  67. A. Pakdel et al., Enhanced thermoelectric performance of Bi–Sb–Te/Sb2O3 nanocomposites by energy filtering effect. J. Mater. Chem. A 6(43), 21341–21349 (2018)

    Article  CAS  Google Scholar 

  68. B.J. Van Zeghbroeck, Principles of semiconductor devices (Bart Van Zeghbroeck, 2011)

    Google Scholar 

  69. C. Hu et al., Carrier grain boundary scattering in thermoelectric materials. Energy Environ. Sci. 15(4), 1406–1422 (2022)

    Article  CAS  Google Scholar 

  70. P. Dharmaiah et al., Influence of powder size on thermoelectric properties of p-type 25% Bi2Te375% Sb2Te3 alloys fabricated using gas-atomization and spark-plasma sintering. J. Alloys Compd. 686, 1–8 (2016)

    Article  CAS  Google Scholar 

  71. D. Liang et al., A facile synthetic approach for copper iron sulfide nanocrystals with enhanced thermoelectric performance. Nanoscale 4(20), 6265–6268 (2012)

    Article  CAS  PubMed  Google Scholar 

  72. K. Suekuni et al., High-performance thermoelectric minerals: colusites Cu26V2M6S32 (M=Ge, Sn). Appl. Phys. Lett. 105(13), 132107 (2014)

    Article  Google Scholar 

  73. Z.-H. Ge et al., Synthesis and transport property of Cu1.8S as a promising thermoelectric compound. Chem. Commun. 47(47), 12697–12699 (2011)

    Article  CAS  Google Scholar 

  74. X. Liang, D. Jin, F. Dai, Phase transition engineering of Cu2S to widen the temperature window of improved thermoelectric performance. Adv. Electron. Mater. 5(10), 1900486 (2019)

    Article  CAS  Google Scholar 

  75. R. Mulla, M. Rabinal, Ambient growth of highly oriented Cu2S dendrites of superior thermoelectric behaviour. Appl. Surf. Sci. 397, 70–76 (2017)

    Article  CAS  Google Scholar 

  76. H. Tang et al., Graphene network in copper sulfide leading to enhanced thermoelectric properties and thermal stability. Nano Energy 49, 267–273 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no fundings or other supports received for the reported work.

Author information

Authors and Affiliations

Authors

Contributions

JM: performed writing-original drafts, investigations, and conceptualization. SR and RR: performed an investigation and writing methodology. FJP: performed plots and validation formal analysis. MA: performed investigation, resources, and data curation. GA: performed supervision, review and editing, and project administration. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to G. Anbalagan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, J., Radha, S., Prita, F.J. et al. Enhancing the Thermoelectric Performance of Cu2S/CuO Nanocomposites Through Energy-Filtering effect and Phonon Scattering. J Inorg Organomet Polym 34, 1548–1563 (2024). https://doi.org/10.1007/s10904-023-02885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02885-5

Keywords

Navigation