Skip to main content
Log in

Low-Temperature-Annealed Reduced Graphene Oxide–Polyaniline Nanocomposites for Supercapacitor Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Screen-printed reduced graphene oxide (rGO)–polyaniline (PANI) nanocomposites with/without post-annealing were used as the electrode of a supercapacitor with a polyvinyl alcohol/H2SO4 quasi-solid-state gel electrolyte. Annealing can remove part of the ineffective organic binders and thus enhance the supercapacitive performance. However, too high an annealing temperature may damage PANI, thus reducing the pseudocapacitance. Annealing at 100°C for 10 min results in the best achieved areal capacitance of 102.73 mF/cm2, as evaluated by cyclic voltammetry (CV) under a potential scan rate of 2 mV/s. The capacitance retention rate is 88% after 1000 CV cycles under bending with a bending radius of 0.55 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Armand and J.-M. Tarascon, Nature 451, 652 (2008).

    Article  Google Scholar 

  2. M. Berggren, D. Nilsson, and N.D. Robinson, Nat. Mater. 6, 3 (2007).

    Article  Google Scholar 

  3. C.-H. Yang, F.-H. Kuok, C.-Y. Liao, T.-H. Wan, C.-W. Chen, C.-C. Hsu, I.-C. Cheng, and J.-Z. Chen, Mater. Res. Express 4, 025504 (2017).

    Article  Google Scholar 

  4. F.C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009).

    Article  Google Scholar 

  5. D.A. Pardo, G.E. Jabbour, and N. Peyghambarian, Adv. Mater. 12, 1249 (2000).

    Article  Google Scholar 

  6. C.H. Xu, P.-Y. Shen, Y.-F. Chiu, P.-W. Yeh, C.-C. Chen, L.-C. Chen, C.-C. Hsu, I.-C. Cheng, and J.-Z. Chen, J. Alloys Compds. 676, 469 (2016).

    Article  Google Scholar 

  7. C.H. Xu and J.-Z. Chen, Ceram. Int. 42, 14287 (2016).

    Article  Google Scholar 

  8. T.-H. Wan, Y.-F. Chiu, C.-W. Chen, C.-C. Hsu, I.C. Cheng, and J.-Z. Chen, Coatings 6, 44 (2016).

    Article  Google Scholar 

  9. Y.F. Xu, M.G. Schwab, A.J. Strudwick, I. Hennig, X.L. Feng, Z.S. Wu, and K. Mullen, Adv. Energy Mater. 3, 1035 (2013).

    Article  Google Scholar 

  10. M.Z. Jacobson, Energy Environ. Sci. 2, 148 (2009).

    Article  Google Scholar 

  11. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, and S. Dai, Adv. Mater. 23, 4828 (2011).

    Article  Google Scholar 

  12. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, and J. Liu, Chem. Rev. 111, 3577 (2011).

    Article  Google Scholar 

  13. M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, and G. Gruner, Nano Lett. 9, 1872 (2009).

    Article  Google Scholar 

  14. P. Simon and Y. Gogotsi, Acc. Chem. Res. 46, 1094 (2012).

    Article  Google Scholar 

  15. Y. Gogotsi and P. Simon, Science 334, 917 (2011).

    Article  Google Scholar 

  16. D. Pullini, V. Siong, D. Tamvakos, B.L. Ortega, M.F. Sgroi, A. Veca, C. Glanz, I. Kolaric, and A. Pruna, Compos. Sci. Technol. 112, 16 (2015).

    Article  Google Scholar 

  17. M. Li, X.L. Han, X.Q. Chang, W.C. Yin, and J.Y. Ma, J. Electron. Mater. 45, 4331 (2016).

    Article  Google Scholar 

  18. L.T. Scarabelot, D. Muller, L.V. De Souza, D. Hotza, and C.R. Rambo, J. Electron. Mater. 46, 5232 (2017).

    Article  Google Scholar 

  19. M. Shahraki, S. Elyasi, H. Heydari, and N. Dalir, J. Electron. Mater. 46, 4948 (2017).

    Article  Google Scholar 

  20. J. Ye, Z. Li, Z. Dai, Z.Y. Zhang, M.Q. Guo, and X.J. Wang, J. Electron. Mater. 45, 4237 (2016).

    Article  Google Scholar 

  21. X. Cheng, X. Gui, Z. Lin, Y. Zheng, M. Liu, R. Zhan, Y. Zhu, and Z. Tang, J. Mater. Chem. A 3, 20927 (2015).

    Article  Google Scholar 

  22. S. Saha, S. Chhetri, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, and T. Kuila, J. Energy Storage 6, 22 (2016).

    Article  Google Scholar 

  23. Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, and L. Liu, Energy Fuels 27, 568 (2012).

    Article  Google Scholar 

  24. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  25. C. Liu, Y. Zhenning, D. Neff, A. Zhamu, and B.Z. Jang, Nano Lett. 10, 4863 (2010).

    Article  Google Scholar 

  26. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, J. Phys. Chem. C 113, 13103 (2009).

    Article  Google Scholar 

  27. F.H. Kuok, C.Y. Liao, T.H. Wan, P.W. Yeh, I.C. Cheng, and J.Z. Chen, J. Alloys Compds. 692, 558 (2017).

    Article  Google Scholar 

  28. F. Wang, H.J. Kim, S. Park, C.D. Kee, S.J. Kim, and I.K. Oh, Compos. Sci. Technol. 128, 33 (2016).

    Article  Google Scholar 

  29. L.N. Yue, Y.J. Xie, Y.D. Zheng, W. He, S.L. Guo, Y. Sun, T. Zhang, and S.M. Liu, Compos. Sci. Technol. 145, 122 (2017).

    Article  Google Scholar 

  30. D. Li, J. Huang, and R.B. Kaner, Acc. Chem. Res. 42, 135 (2008).

    Article  Google Scholar 

  31. K.S. Ryu, K.M. Kim, N.-G. Park, Y.J. Park, and S.H. Chang, J. Power Sources 103, 305 (2002).

    Article  Google Scholar 

  32. H. Wang, Q. Hao, X. Yang, L. Lude, and X. Wang, Nanoscale 2, 2164 (2010).

    Article  Google Scholar 

  33. M. Moussa, M.F. El-Kady, Z.H. Zhao, P. Majewski, and J. Ma, Nanotechnology 27, 442001 (2016).

    Article  Google Scholar 

  34. C.K. Bulin, H.T. Yu, X. Ge, G.X. Xin, R.G. Xing, R.H. Li, and B.W. Zhang, J. Mater. Sci. 52, 5871 (2017).

    Article  Google Scholar 

  35. M.B. Tayel, M.M. Soliman, S. Ebrahim, and M.E. Harb, J. Electron. Mater. 45, 820 (2016).

    Article  Google Scholar 

  36. X. Zang, X. Li, M. Zhu, X. Li, Z. Zhen, Y. He, K. Wang, J. Wei, F. Kang, and H. Zhu, Nanoscale 7, 7318 (2015).

    Article  Google Scholar 

  37. D. Gui, C. Liu, F. Chen, and J. Liu, Appl. Surf. Sci. 307, 172 (2014).

    Article  Google Scholar 

  38. L. Liu, D. Ye, Y. Yao, L. Liu, and W. Yue, Carbon 111, 121 (2017).

    Article  Google Scholar 

  39. Y.S. Moon, D. Kim, G. Lee, S.Y. Hong, K.K. Kim, S.M. Park, and J.S. Ha, Carbon 81, 29 (2015).

    Article  Google Scholar 

  40. D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).

    Article  Google Scholar 

  41. Z. Gao, X. Liu, J. Chang, W. Dapeng, X. Fang, L. Zhang, D. Weimin, and K. Jiang, J. Power Sour. 337, 25 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Ministry of Science and Technology of Taiwan under Grand Nos. MOST 105-2221-E-002-047-MY3 and MOST 106-2221-E-002-193-MY2. The clean room facility was provided by the Nano-Electro-Mechanical-Systems Research Center at National Taiwan University. The authors would like to thank Ms. Yuan-Tzu Lee of the Instrument Center at National Taiwan University for her assistance with the SEM operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, CY., Chien, HH., Hao, YC. et al. Low-Temperature-Annealed Reduced Graphene Oxide–Polyaniline Nanocomposites for Supercapacitor Applications. J. Electron. Mater. 47, 3861–3868 (2018). https://doi.org/10.1007/s11664-018-6260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6260-3

Keywords

Navigation