Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3861–3868 | Cite as

Low-Temperature-Annealed Reduced Graphene Oxide–Polyaniline Nanocomposites for Supercapacitor Applications

  • Chen-Yu Liao
  • Hung-Hua Chien
  • Yu-Chuan Hao
  • Chieh-Wen Chen
  • Ing-Song Yu
  • Jian-Zhang Chen
Article

Abstract

Screen-printed reduced graphene oxide (rGO)–polyaniline (PANI) nanocomposites with/without post-annealing were used as the electrode of a supercapacitor with a polyvinyl alcohol/H2SO4 quasi-solid-state gel electrolyte. Annealing can remove part of the ineffective organic binders and thus enhance the supercapacitive performance. However, too high an annealing temperature may damage PANI, thus reducing the pseudocapacitance. Annealing at 100°C for 10 min results in the best achieved areal capacitance of 102.73 mF/cm2, as evaluated by cyclic voltammetry (CV) under a potential scan rate of 2 mV/s. The capacitance retention rate is 88% after 1000 CV cycles under bending with a bending radius of 0.55 cm.

Keywords

Supercapacitor polyaniline graphene reduced graphene oxide quasi-solid-state gel electrolyte flexible electronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research is funded by the Ministry of Science and Technology of Taiwan under Grand Nos. MOST 105-2221-E-002-047-MY3 and MOST 106-2221-E-002-193-MY2. The clean room facility was provided by the Nano-Electro-Mechanical-Systems Research Center at National Taiwan University. The authors would like to thank Ms. Yuan-Tzu Lee of the Instrument Center at National Taiwan University for her assistance with the SEM operation.

References

  1. 1.
    M. Armand and J.-M. Tarascon, Nature 451, 652 (2008).CrossRefGoogle Scholar
  2. 2.
    M. Berggren, D. Nilsson, and N.D. Robinson, Nat. Mater. 6, 3 (2007).CrossRefGoogle Scholar
  3. 3.
    C.-H. Yang, F.-H. Kuok, C.-Y. Liao, T.-H. Wan, C.-W. Chen, C.-C. Hsu, I.-C. Cheng, and J.-Z. Chen, Mater. Res. Express 4, 025504 (2017).CrossRefGoogle Scholar
  4. 4.
    F.C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009).CrossRefGoogle Scholar
  5. 5.
    D.A. Pardo, G.E. Jabbour, and N. Peyghambarian, Adv. Mater. 12, 1249 (2000).CrossRefGoogle Scholar
  6. 6.
    C.H. Xu, P.-Y. Shen, Y.-F. Chiu, P.-W. Yeh, C.-C. Chen, L.-C. Chen, C.-C. Hsu, I.-C. Cheng, and J.-Z. Chen, J. Alloys Compds. 676, 469 (2016).CrossRefGoogle Scholar
  7. 7.
    C.H. Xu and J.-Z. Chen, Ceram. Int. 42, 14287 (2016).CrossRefGoogle Scholar
  8. 8.
    T.-H. Wan, Y.-F. Chiu, C.-W. Chen, C.-C. Hsu, I.C. Cheng, and J.-Z. Chen, Coatings 6, 44 (2016).CrossRefGoogle Scholar
  9. 9.
    Y.F. Xu, M.G. Schwab, A.J. Strudwick, I. Hennig, X.L. Feng, Z.S. Wu, and K. Mullen, Adv. Energy Mater. 3, 1035 (2013).CrossRefGoogle Scholar
  10. 10.
    M.Z. Jacobson, Energy Environ. Sci. 2, 148 (2009).CrossRefGoogle Scholar
  11. 11.
    Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, and S. Dai, Adv. Mater. 23, 4828 (2011).CrossRefGoogle Scholar
  12. 12.
    Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, and J. Liu, Chem. Rev. 111, 3577 (2011).CrossRefGoogle Scholar
  13. 13.
    M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, and G. Gruner, Nano Lett. 9, 1872 (2009).CrossRefGoogle Scholar
  14. 14.
    P. Simon and Y. Gogotsi, Acc. Chem. Res. 46, 1094 (2012).CrossRefGoogle Scholar
  15. 15.
    Y. Gogotsi and P. Simon, Science 334, 917 (2011).CrossRefGoogle Scholar
  16. 16.
    D. Pullini, V. Siong, D. Tamvakos, B.L. Ortega, M.F. Sgroi, A. Veca, C. Glanz, I. Kolaric, and A. Pruna, Compos. Sci. Technol. 112, 16 (2015).CrossRefGoogle Scholar
  17. 17.
    M. Li, X.L. Han, X.Q. Chang, W.C. Yin, and J.Y. Ma, J. Electron. Mater. 45, 4331 (2016).CrossRefGoogle Scholar
  18. 18.
    L.T. Scarabelot, D. Muller, L.V. De Souza, D. Hotza, and C.R. Rambo, J. Electron. Mater. 46, 5232 (2017).CrossRefGoogle Scholar
  19. 19.
    M. Shahraki, S. Elyasi, H. Heydari, and N. Dalir, J. Electron. Mater. 46, 4948 (2017).CrossRefGoogle Scholar
  20. 20.
    J. Ye, Z. Li, Z. Dai, Z.Y. Zhang, M.Q. Guo, and X.J. Wang, J. Electron. Mater. 45, 4237 (2016).CrossRefGoogle Scholar
  21. 21.
    X. Cheng, X. Gui, Z. Lin, Y. Zheng, M. Liu, R. Zhan, Y. Zhu, and Z. Tang, J. Mater. Chem. A 3, 20927 (2015).CrossRefGoogle Scholar
  22. 22.
    S. Saha, S. Chhetri, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, and T. Kuila, J. Energy Storage 6, 22 (2016).CrossRefGoogle Scholar
  23. 23.
    Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, and L. Liu, Energy Fuels 27, 568 (2012).CrossRefGoogle Scholar
  24. 24.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  25. 25.
    C. Liu, Y. Zhenning, D. Neff, A. Zhamu, and B.Z. Jang, Nano Lett. 10, 4863 (2010).CrossRefGoogle Scholar
  26. 26.
    Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, J. Phys. Chem. C 113, 13103 (2009).CrossRefGoogle Scholar
  27. 27.
    F.H. Kuok, C.Y. Liao, T.H. Wan, P.W. Yeh, I.C. Cheng, and J.Z. Chen, J. Alloys Compds. 692, 558 (2017).CrossRefGoogle Scholar
  28. 28.
    F. Wang, H.J. Kim, S. Park, C.D. Kee, S.J. Kim, and I.K. Oh, Compos. Sci. Technol. 128, 33 (2016).CrossRefGoogle Scholar
  29. 29.
    L.N. Yue, Y.J. Xie, Y.D. Zheng, W. He, S.L. Guo, Y. Sun, T. Zhang, and S.M. Liu, Compos. Sci. Technol. 145, 122 (2017).CrossRefGoogle Scholar
  30. 30.
    D. Li, J. Huang, and R.B. Kaner, Acc. Chem. Res. 42, 135 (2008).CrossRefGoogle Scholar
  31. 31.
    K.S. Ryu, K.M. Kim, N.-G. Park, Y.J. Park, and S.H. Chang, J. Power Sources 103, 305 (2002).CrossRefGoogle Scholar
  32. 32.
    H. Wang, Q. Hao, X. Yang, L. Lude, and X. Wang, Nanoscale 2, 2164 (2010).CrossRefGoogle Scholar
  33. 33.
    M. Moussa, M.F. El-Kady, Z.H. Zhao, P. Majewski, and J. Ma, Nanotechnology 27, 442001 (2016).CrossRefGoogle Scholar
  34. 34.
    C.K. Bulin, H.T. Yu, X. Ge, G.X. Xin, R.G. Xing, R.H. Li, and B.W. Zhang, J. Mater. Sci. 52, 5871 (2017).CrossRefGoogle Scholar
  35. 35.
    M.B. Tayel, M.M. Soliman, S. Ebrahim, and M.E. Harb, J. Electron. Mater. 45, 820 (2016).CrossRefGoogle Scholar
  36. 36.
    X. Zang, X. Li, M. Zhu, X. Li, Z. Zhen, Y. He, K. Wang, J. Wei, F. Kang, and H. Zhu, Nanoscale 7, 7318 (2015).CrossRefGoogle Scholar
  37. 37.
    D. Gui, C. Liu, F. Chen, and J. Liu, Appl. Surf. Sci. 307, 172 (2014).CrossRefGoogle Scholar
  38. 38.
    L. Liu, D. Ye, Y. Yao, L. Liu, and W. Yue, Carbon 111, 121 (2017).CrossRefGoogle Scholar
  39. 39.
    Y.S. Moon, D. Kim, G. Lee, S.Y. Hong, K.K. Kim, S.M. Park, and J.S. Ha, Carbon 81, 29 (2015).CrossRefGoogle Scholar
  40. 40.
    D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).CrossRefGoogle Scholar
  41. 41.
    Z. Gao, X. Liu, J. Chang, W. Dapeng, X. Fang, L. Zhang, D. Weimin, and K. Jiang, J. Power Sour. 337, 25 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Graduate Institute of Applied MechanicsNational Taiwan UniversityTaipei CityTaiwan
  2. 2.Department of Materials Science and EngineeringNational Dong Hwa UniversityHualienTaiwan
  3. 3.Department of Chemical EngineeringNational Taiwan UniversityTaipei CityTaiwan

Personalised recommendations