Skip to main content
Log in

Synthesis of Carbon-Based Spinel NiCo2O4 Nanocomposite and Its Application as an Electrochemical Capacitor

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, a thermal method was used to synthesize spinel NiCo2O4 and carbon nanotubes (CNTs)@NiCo2O4 with an average size 50 nm and 20 nm, respectively. Addition of CNTs into NiCo2O4 noticeably increases the active surface area compared to pure spinel NiCo2O4. SEM analyses showed that the morphologies are spherical in both pure and composite samples. Uniform CNTs@NiCo2O4 nanoparticles exhibit high specific capacitance of 210 F g−1 at 2 A g−1 and a good retention capacity of 92.70% after 2500 cycles, which shows a considerable improvement compared to NiCo2O4. Additionally, an exceptional rate capability of about 73.2% was obtained at 50 A g−1. Such remarkable electrochemical performance of the CNTs@NiCo2O4 can be attributed to high specific surface area and also uniform structure which increase the exposure of active sites available for reaction on the surface shortened transport pathways for both electrons and ion. Also, volume change during the charge-discharge process is mainly alleviated compared to pure spinel NiCo2O4. A carbonaceous material such as the CNT facilitates the charge transfer and improves the stability of frame against volume change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, Nano Energy 2, 213 (2013).

    Article  Google Scholar 

  2. C.J. Barnhart and S.M. Benson, Energy Environ. Sci. 6, 1083 (2013).

    Article  Google Scholar 

  3. Z.S. Wu, Y. Sun, Y.Z. Tan, S. Yang, X. Feng, and K. Müllen, JACS 134, 19532 (2012).

    Article  Google Scholar 

  4. K. Dai, L. Lu, C. Liang, J. Dai, Q. Liu, Y. Zhang, G. Zhu, and Z. Liu, Electrochim. Acta 116, 111 (2014).

    Article  Google Scholar 

  5. L. Yang, Z. Shi, and W. Yang, Electrochim. Acta 153, 76 (2015).

    Article  Google Scholar 

  6. B.C. Kim, J.M. Ko, and G.G. Wallace, J. Power Sources 177, 665 (2008).

    Article  Google Scholar 

  7. R. Sharma, A. Rastogi, and S. Desu, Electrochem. Commun. 10, 268 (2008).

    Article  Google Scholar 

  8. C. Zheng, C. Cao, Z. Ali, and J. Hou, J. Mater. Chem. A. 2, 16467 (2014).

    Article  Google Scholar 

  9. A. Thissen, D. Ensling, F.J. Fernández Madrigal, W. Jaegermann, R. Alcántara, P. Lavela, and J.L. Tirado, Chem. Mater. 17, 5202 (2005).

    Article  Google Scholar 

  10. L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, and M. Liu, Nano Lett. 13, 3135 (2013).

    Article  Google Scholar 

  11. C. An, Y. Wang, Y. Huang, Y. Xu, C. Xu, L. Jiao, and H. Yuan, CrystEngComm 16, 385 (2014).

    Article  Google Scholar 

  12. A. Trunov, Electrochim. Acta 105, 506 (2013).

    Article  Google Scholar 

  13. Y. Lei, J. Li, Y. Wang, L. Gu, Y. Chang, H. Yuan, D. Xiao, and A.C.S. Appl, Mater. Interfaces 6, 1773 (2014).

    Article  Google Scholar 

  14. Y. Zhu, Z. Wu, M. Jing, X. Jia, and X. Ji, Electrochim. Acta 178, 153 (2015).

    Article  Google Scholar 

  15. G.Q. Zhang, H.B. Wu, H.E. Hoster, M.B. Chan-Park, and X.W.D. Lou, Energy Environ. Sci. 5, 9453 (2012).

    Article  Google Scholar 

  16. Y. Zhu, J. Chen, N. Zhao, W. Lin, C. Lai, and Q. Wang, Mater. Lett. 160, 171 (2015).

    Article  Google Scholar 

  17. L. Shen, Q. Che, H. Li, and X. Zhang, Adv. Funct. Mater. 24, 2630 (2014).

    Article  Google Scholar 

  18. J. Zhao, J. Chen, S. Xu, M. Shao, Q. Zhang, F. Wei, J. Ma, M. Wei, D.G. Evans, and X. Duan, Adv. Funct. Mater. 24, 2938 (2014).

    Article  Google Scholar 

  19. Z. Ma, X. Huang, S. Dou, J. Wu, and S. Wang, J. Phys. Chem. C 118, 17231 (2014).

    Article  Google Scholar 

  20. Z. Wu, X. Pu, Y. Zhu, M. Jing, Q. Chen, X. Jia, and X. Ji, J. Alloys Compd. 632, 208 (2015).

    Article  Google Scholar 

  21. L. Hu, D.S. Hecht, and G. Grüner, Chem. Rev. 110, 5790 (2010).

    Article  Google Scholar 

  22. B. Dong, Y. Su, Y. Liu, J. Yuan, J. Xu, and L. Zheng, J. Colloid Interface Sci. 356, 190 (2011).

    Article  Google Scholar 

  23. S. Saha, M. Jana, P. Samanta, N.C. Murmu, N.H. Kim, T. Kuila, and J.H. Lee, RSC Adv. 4, 44777 (2014).

    Article  Google Scholar 

  24. Y. Zhu, Z. Wu, M. Jing, X. Yang, W. Song, and X. Ji, J. Power Sources 273, 584 (2015).

    Article  Google Scholar 

  25. Y. Zhu, X. Ji, Z. Wu, W. Song, H. Hou, Z. Wu, X. He, Q. Chen, and C.E. Banks, J. Power Sources 267, 888 (2014).

    Article  Google Scholar 

  26. J. Han, G. Xu, B. Ding, J. Pan, H. Dou, and D.R. MacFarlane, J. Mater. Chem. A 2, 5352 (2014).

    Article  Google Scholar 

  27. J. Haenen, W. Visscher, and E. Barendrecht, J. Electroanal. Chem. Interfacial Electrochem. 208, 273 (1986).

    Article  Google Scholar 

  28. J.-M. Luo, B. Gao, and X.-G. Zhang, Mater. Res. Bull. 43, 1119 (2008).

    Article  Google Scholar 

  29. S. Dhibar, P. Bhattacharya, G. Hatui, S. Sahoo, and C. Das, ACS Sustain. Chem. Eng. 2, 1114 (2014).

    Article  Google Scholar 

  30. F. Yang, J. Yao, F. Liu, H. He, M. Zhou, P. Xiao, and Y. Zhang, J. Mater. Chem. A 1, 594 (2013).

    Article  Google Scholar 

  31. T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, and C.C. Hu, Adv. Mater. 22, 347 (2010).

    Article  Google Scholar 

  32. R. Rakhi, W. Chen, D. Cha, and H.N. Alshareef, J. Mater. Chem. 21, 16197 (2011).

    Article  Google Scholar 

  33. M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Dalir.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahraki, M., Elyasi, S., Heydari, H. et al. Synthesis of Carbon-Based Spinel NiCo2O4 Nanocomposite and Its Application as an Electrochemical Capacitor. J. Electron. Mater. 46, 4948–4954 (2017). https://doi.org/10.1007/s11664-017-5490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5490-0

Keywords

Navigation