Skip to main content

Advertisement

Log in

Nitrogen/Sulfur-Codoped Carbon Materials from Chitosan for Supercapacitors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

d-Methionine and chitosan have been used for fabrication of nitrogen/sulfur-codoped carbon materials by a hydrothermal process followed by carbonization at 750°C for 3 h. The as-prepared carbon materials showed enhanced electrochemical performance, combining electrical double-layer capacitance with pseudocapacitance owing to the doping with sulfur and nitrogen. The specific capacitance of the obtained carbon material reached 135 F g−1 at current density of 1 A g−1, which is much higher than undoped chitosan (67 F g−1). The capacitance retention of the carbon material was almost 97.2% after 5000 cycles at current density of 1 A g−1. With such improved electrochemical performance, the nitrogen/sulfur-codoped carbon material may have promising potential for use in energy-storage electrodes of supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Primo, P. Atienzar, E. Sanchez, J.M. Delgado, and H. García, Chem. Commun. 48, 9254 (2012).

    Article  Google Scholar 

  2. Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, and Y. Liu, Chem. Commun. 48, 380 (2012).

    Article  Google Scholar 

  3. L. Zhao, N. Baccile, S. Gross, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, and M.-M. Titirici, Carbon 48, 3778 (2010).

    Article  Google Scholar 

  4. A. Kucinska, A. Cyganiuk, and J.P. Lukaszewicz, Carbon 50, 3092 (2012).

    Article  Google Scholar 

  5. W. Shen and W. Fan, J. Mater. Chem. A 1, 999 (2013).

    Article  Google Scholar 

  6. Y. Hu, H. Wang, L. Yang, X. Liu, B. Zhang, Y. Liu, Y. Xiao, M. Zheng, B. Lei, H. Zhang, and H. Fu, J. Electrochem. Soc. 160, H321 (2013).

    Article  Google Scholar 

  7. H.J. Burch, J.A. Davies, E. Brown, L. Hao, S.A. Contera, N. Grobert, and J.F. Ryan, Appl. Phys. Lett. 89, 143110 (2006).

    Article  Google Scholar 

  8. Y. Shao, J. Sui, G. Yin, and Y. Gao, Appl. Catal. B 79, 89 (2008).

    Article  Google Scholar 

  9. G. Lota, K. Lota, and E. Frackowiak, Electrochem. Commun. 9, 1828 (2007).

    Article  Google Scholar 

  10. L. Sun, D. Wang, Y. Luo, K. Wang, W. Kong, Y. Wu, L. Zhang, K. Jiang, Q. Li, Y. Zhang, J. Wang, and S. Fan, ACS Nano 10, 1300 (2016).

    Article  Google Scholar 

  11. J. Beltran-Huarac, O. Resto, J. Carpena-Nunez, W.M. Jadwisienczak, L.F. Fonseca, B.R. Weiner, and G. Morell, ACS Appl. Mater. Interfaces 6, 1180 (2014).

    Article  Google Scholar 

  12. C. Petit, G.W. Peterson, J. Mahle, and T.J. Bandosz, Carbon 48, 1779 (2010).

    Article  Google Scholar 

  13. M. Seredych, M. Khine, and T.J. Bandosz, ChemSusChem 4, 139 (2011).

    Article  Google Scholar 

  14. S.-A. Wohlgemuth, R.J. White, M.-G. Willinger, M.-M. Titirici, and M. Antonietti, Green Chem. 14, 1515 (2012).

    Article  Google Scholar 

  15. G. Hasegawa, M. Aoki, K. Kanamori, K. Nakanishi, T. Hanada, and K. Tadanaga, J. Mater. Chem. 21, 2060 (2011).

    Article  Google Scholar 

  16. Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, and S. Huang, ACS Nano 6, 205 (2012).

    Article  Google Scholar 

  17. N. Fechler, T.-P. Fellinger, and M. Antonietti, J. Mater. Chem. A 1, 14097 (2013).

    Article  Google Scholar 

  18. S.-A. Wohlgemuth, F. Vilela, M.-M. Titirici, and M. Antonietti, Green Chem. 14, 741 (2012).

    Article  Google Scholar 

  19. D. Zhang, L. Zheng, Y. Ma, L. Lei, Q. Li, Y. Li, H. Luo, H. Feng, Y. Hao, and A.C.S. Appl, Mater. Interfaces 6, 2657 (2014).

    Article  Google Scholar 

  20. G. Xu, J. Han, B. Ding, P. Nie, J. Pan, H. Dou, H. Li, and X. Zhang, Green Chem. 17, 1668 (2015).

    Article  Google Scholar 

  21. G. Xu, B. Ding, P. Nie, L. Shen, H. Dou, X. Zhang, and A.C.S. Appl, Mater. Interfaces 6, 194 (2014).

    Article  Google Scholar 

  22. W. Yang, T.-P. Fellinger, and M. Antonietti, J. Am. Chem. Soc. 133, 206 (2011).

    Article  Google Scholar 

  23. T.-P. Fellinger, F. Hasché, P. Strasser, and M. Antonietti, J. Am. Chem. Soc. 134, 4072 (2012).

    Article  Google Scholar 

  24. D. Zhang, Y. Hao, L. Zheng, Y. Ma, H. Feng, and H. Luo, J. Mater. Chem. A 1, 7584 (2013).

    Article  Google Scholar 

  25. Y. Wan, H. Wu, A. Yu, and D. Wen, Biomacromolecules 7, 1362 (2006).

    Article  Google Scholar 

  26. W. Guo, L. Xu, F. Li, B. Xu, Y. Yang, S. Liu, and Z. Sun, Electrochim. Acta 55, 1523 (2010).

    Article  Google Scholar 

  27. H. Kaczmarek and J. Zawadzki, Carbohydr. Res. 345, 941 (2010).

    Article  Google Scholar 

  28. J.P. Paraknowitsch, A. Thomas, and M. Antonietti, J. Mater. Chem. 20, 6746 (2010).

    Article  Google Scholar 

  29. J.P. Paraknowitsch, J. Zhang, D. Su, A. Thomas, and M. Antonietti, Adv. Mater. 22, 87 (2010).

    Article  Google Scholar 

  30. G. Xu, B. Ding, P. Nie, L. Shen, J. Wang, and X. Zhang, Chem. Eur. J. 19, 12306 (2013).

    Article  Google Scholar 

  31. Y. Xia, Y. Zhu, and Y. Tang, Carbon 50, 5543 (2012).

    Article  Google Scholar 

  32. J.P. Paraknowitsch, A. Thomas, and J. Schmidt, Chem. Commun. 47, 8283 (2011).

    Article  Google Scholar 

  33. D. Liu, Z. Li, Y. Zhu, Z. Li, and R. Kumar, Carbohydr. Polym. 111, 469 (2014).

    Article  Google Scholar 

  34. J. Lee, S. Yoon, S. Oh, C.-H. Shin, and T. Hyeon, Adv. Mater. 12, 359 (2000).

    Article  Google Scholar 

  35. K. Zhang, L.L. Zhang, X.S. Zhao, and J. Wu, Chem. Mater. 22, 1392 (2010).

    Article  Google Scholar 

  36. Z.R. Ismagilov, A.E. Shalagina, O.Y. Podyacheva, A.V. Ischenko, L.S. Kibis, A.I. Boronin, Y.A. Chesalov, D.I. Kochubey, A.I. Romanenko, O.B. Anikeeva, T.I. Buryakov, and E.N. Tkachev, Carbon 47, 1922 (2009).

    Article  Google Scholar 

  37. Y. Huang, S.L. Candelaria, Y. Li, Z. Li, J. Tian, L. Zhang, and G. Cao, J. Power Sources 252, 90 (2014).

    Article  Google Scholar 

  38. Y. Zhang, M. Li, L. Yang, K. Yi, Z. Li, and J. Yao, J. Solid State Electrochem. 18, 2139 (2014).

    Article  Google Scholar 

  39. H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, and J.W. Choi, Nano Lett. 11, 2472 (2011).

    Article  Google Scholar 

  40. Z. Wu, W. Ren, L. Xu, F. Li, and H. Cheng, ACS Nano 5, 5463 (2011).

    Article  Google Scholar 

  41. X. Zhao, Q. Zhang, C.-M. Chen, B. Zhang, S. Reiche, A. Wang, T. Zhang, R. Schlögl, and D.S. Su, Nano Energy 1, 624 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Shandong Province (ZR2015BM001) and the Doctoral Startup Foundation of Qilu University of Technology (12042826).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Han, X., Chang, X. et al. Nitrogen/Sulfur-Codoped Carbon Materials from Chitosan for Supercapacitors. J. Electron. Mater. 45, 4331–4337 (2016). https://doi.org/10.1007/s11664-016-4644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4644-9

Keywords

Navigation