Skip to main content
Log in

Structural, Magnetic and Microwave Properties of Nanocrystalline Ni-Co-Gd Ferrites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A series of Co- and Gd-substituted NiFe2O4 ferrite nanoparticles with the formula Ni1−x Co x Fe2−y Gd y O4 (where x = 0.0–1.0 and y = 0.0–0.1) have been successfully synthesized using a hydrothermal method. X-ray diffraction and field emission scanning electron microscopy results indicated that a highly crystallized spherical ferrite nanoparticle structure was obtained along with an increase in the lattice parameters. Compositional analysis of the prepared nanoferrite powders has been carried out using energy-dispersive x-ray (EDX) spectra. The EDX analysis reveals the presence of Ni, Co, Gd and Fe elements in the specimens. Magnetization and the coercive field improved dramatically with an increase in the amount of cobalt and gadolinium added, attributed to the redistribution of cations in the spinel nanoferrite structure. Saturation magnetization and coercivity values up to 99 emu/g and 918 Oe, respectively, were measured using a vibration sample magnetometer at room temperature. Comparative microwave absorption experiments demonstrated that the reflection loss (RL) properties enhanced with increasing substitution of cations in the Ni-ferrite spinel structure for an absorber thickness of 1.8 mm. A maximum RL of − 26.7 dB was obtained for substituted Ni-Co-Gd nanoferrite with x = 1.0 and y = 0.1 at a frequency of 9.4 GHz with a bandwidth of 3.6 GHz (RL ≤ − 10 dB). Experimental results revealed that the synthesized nanoparticles possessed great potential in microwave absorption applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Ghodake, R.C. Kambale, and S. Suryavanshi, Ceram. Int. 43, 1129 (2017).

    Article  Google Scholar 

  2. C.-Y. Tsay, S.-C. Liang, C.-M. Lei, and C.-C. Chang, Ceram. Int. 42, 4748 (2016).

    Article  Google Scholar 

  3. T. Sodaee, A. Ghasemi, E. Paimozd, A. Paesano, and A. Morisako, J. Magn. Magn. Mater. 330, 169 (2013).

    Article  Google Scholar 

  4. S. Karimi, P. Kameli, H. Ahmadvand, and H. Salamati, Ceram. Int. 42, 16948 (2016).

    Article  Google Scholar 

  5. X. Wu, W. Chen, W. Wu, H. Li, and C. Lin, J. Electron. Mater. 46, 199 (2017).

    Article  Google Scholar 

  6. B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials (Chicago: Wiley, 2011).

    Google Scholar 

  7. A. Ghasemi and M. Mousavinia, Ceram. Int. 40, 2825 (2014).

    Article  Google Scholar 

  8. A. Goldman, Modern Ferrite Technology (Chicago: Springer, 2006).

    Google Scholar 

  9. A. Goyal, S. Bansal, V. Kumar, J. Singh, and S. Singhal, Appl. Surf. Sci. 324, 877 (2015).

    Article  Google Scholar 

  10. X. Huang, Y. Zhou, W. Wu, J. Xu, S. Liu, D. Liu, and J. Wu, J. Electron. Mater. 45, 3113 (2016).

    Article  Google Scholar 

  11. R. Kambale, P. Shaikh, S. Kamble, and Y. Kolekar, J. Alloys Compd. 478, 599 (2009).

    Article  Google Scholar 

  12. E. Rezlescu, L. Sachelarie, P. Popa, and N. Rezlescu, IEEE Trans. Magn. 36, 3962 (2000).

    Article  Google Scholar 

  13. T. Sodaee, A. Ghasemi, and R.S. Razavi, Ceram. Int. 42, 17420 (2016).

    Article  Google Scholar 

  14. K.K. Bharathi, J.A. Chelvane, and G. Markandeyulu, J. Magn. Magn. Mater. 321, 3677 (2009).

    Article  Google Scholar 

  15. A. Bhosale and B. Chougule, Mater. Chem. Phys. 97, 273 (2006).

    Article  Google Scholar 

  16. S. Patange, S.E. Shirsath, G. Jangam, K. Lohar, S.S. Jadhav, and K. Jadhav, J. Appl. Phys. 109, 053909 (2011).

    Article  Google Scholar 

  17. Y. Köseoğlu, Ceram. Int. 39, 4221 (2013).

    Article  Google Scholar 

  18. F. Saffari, P. Kameli, M. Rahimi, H. Ahmadvand, and H. Salamati, Ceram. Int. 41, 7352 (2015).

    Article  Google Scholar 

  19. Z.K. Heiba, M.B. Mohamed, M. Ahmed, M. Moussa, and H.H. Hamdeh, J. Alloys Compd. 586, 773 (2014).

    Article  Google Scholar 

  20. D.-H. Chen and X.-R. He, Mater. Res. Bull. 36, 1369 (2001).

    Article  Google Scholar 

  21. C.-H. Peng, C.-C. Hwang, J. Wan, J.-S. Tsai, and S.-Y. Chen, Mater. Sci. Eng., B 117, 27 (2005).

    Article  Google Scholar 

  22. P.A. Shaikh, R. Kambale, A. Rao, and Y. Kolekar, J. Alloys Compd. 492, 590 (2010).

    Article  Google Scholar 

  23. A. Verma and D.C. Dube, J. Am. Ceram. Soc. 88, 519 (2005).

    Article  Google Scholar 

  24. A. Thakur and M. Singh, Ceram. Int. 29, 505 (2003).

    Article  Google Scholar 

  25. P. Tang, D. Kuang, S. Yang, and Y. Zhang, J. Alloys Compd. 656, 912 (2016).

    Article  Google Scholar 

  26. M. Dhiman, R. Sharma, V. Kumar, and S. Singhal, Ceram. Int. 42, 12594 (2016).

    Article  Google Scholar 

  27. Y. Köseoğlu, Ceram. Int. 41, 6417 (2015).

    Article  Google Scholar 

  28. R. Chen, W. Wang, X. Zhao, Y. Zhang, S. Wu, and F. Li, Chem. Eng. J. 242, 226 (2014).

    Article  Google Scholar 

  29. H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  30. A. Shan, X. Wu, J. Lu, C. Chen, and R. Wang, CrystEngComm 17, 1603 (2015).

    Article  Google Scholar 

  31. S. Dalawai, T. Shinde, A. Gadkari, N. Tarwal, J. Jang, and P. Vasambekar, J. Electron. Mater. 46, 1427 (2016).

    Article  Google Scholar 

  32. S. Pavithradevi, N. Suriyanarayanan, T. Boobalan, S. Velumani, M. Chandramohan, and M.M. Raja, J. Electron. Mater. 46, 4835 (2017).

    Article  Google Scholar 

  33. O. Hemeda, M. Said, and M. Barakat, J. Magn. Magn. Mater. 224, 132 (2001).

    Article  Google Scholar 

  34. A. Pradeep and G. Chandrasekaran, Mater. Lett. 60, 371 (2006).

    Article  Google Scholar 

  35. M. Ahmed, E. Ateia, L. Salah, and A. El-Gamal, Mater. Chem. Phys. 92, 310 (2005).

    Article  Google Scholar 

  36. J. Rehman, M. AzharKhan, A. Hussain, F. Iqbal, I. Shakir, G. Murtaza, M. Akhtar, G. Nasar, and M. Warsi, Ceram. Int. 42, 9079 (2016).

    Article  Google Scholar 

  37. I. Nlebedim, N. Ranvah, P. Williams, Y. Melikhov, F. Anayi, J. Snyder, A. Moses, and D. Jiles, J. Magn. Magn. Mater. 321, 2528 (2009).

    Article  Google Scholar 

  38. K. Zhou, W. Chen, X. Wu, W. Wu, C. Lin, and J. Wu, J. Electron. Mater. 46, 4618 (2017).

    Article  Google Scholar 

  39. E. Girgis, M.M. Wahsh, A.G. Othman, L. Bandhu, and K.V. Rao, Nanoscale Res. Lett. 6, 460 (2011).

    Article  Google Scholar 

  40. X. Lu, G. Liang, Q. Sun, and C. Yang, Mater. Lett. 65, 674 (2011).

    Article  Google Scholar 

  41. T. Sodaee, A. Ghasemi, and R.S. Razavi, J. Alloys Compd. 706, 133 (2017).

    Article  Google Scholar 

  42. M. Kumar, S. Shankar, O. Thakur, and A.K. Ghosh, Mater. Lett. 143, 241 (2015).

    Article  Google Scholar 

  43. M.T. Farid, I. Ahmad, M. Kanwal, G. Murtaza, M. Hussain, S.A. Khan, and I. Ali, J. Electron. Mater. 46, 1826 (2017).

    Article  Google Scholar 

  44. A. Nikzad, A. Ghasemi, M.K. Tehrani, and G.R. Gordani, J. Supercond. Nov. Magn. 29, 1657 (2016).

    Article  Google Scholar 

  45. D. Zhang, L. Yuan, M. Lan, Y. Hu, J. Cai, W. Zhang, and H. Li, J. Magn. Magn. Mate. 346, 48 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roghaieh Parvizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikzad, A., Parvizi, R., Rezaei, G. et al. Structural, Magnetic and Microwave Properties of Nanocrystalline Ni-Co-Gd Ferrites. J. Electron. Mater. 47, 1302–1310 (2018). https://doi.org/10.1007/s11664-017-5921-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5921-y

Keywords

Navigation