Skip to main content
Log in

Magnetically Separable Fe2O3/g-C3N4 Nanocomposites with Cocoon-Like Shape: Magnetic Properties and Photocatalytic Activities

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report magnetically separable Fe2O3/g-C3N4 nanocomposites as a photocatalyst under visible-light irradiation in this study. The Fe2O3/g-C3N4 nanocomposites were synthesized through a two-step hydrothermal method. The Fe2O3 with cocoon-like shape was obviously dispersed on the surface of g-C3N4 with porous and layered nanostructure as seen from micrographs of the particles. Furthermore, the magnetic conversion of the samples was studied via vibrating sample magnetometer technology. It was found that the saturated magnetization Ms of the Fe2O3/g-C3N4 nanoparticles obviously decreased in the presence of g-C3N4, and the photocatalytic activity of the samples investigated by degrading Rhodamine B suggested that the Fe2O3/g-C3N4 photocatalyst was prior to the pure Fe2O3 and g-C3N4 samples. In addition, the magnetically separable ability of Fe2O3/g-C3N4 nanocomposites was efficiently exhibited by an external magnet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.L. Wang, L.S. Zhang, Z.G. Chen, J.Q. Hu, S.J. Li, Z.H. Wang, J.S. Liu, and X.C. Wang, Chem. Soc. Rev. 43, 5234 (2014).

    Article  Google Scholar 

  2. X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, and K. Domen, Nat. Mater. 8, 76 (2009).

    Article  Google Scholar 

  3. Y.G. Xu, S.Q. Huang, M. Xie, Y.P. Li, H. Xu, L.Y. Huang, Q. Zhang, and H.M. Li, RSC Adv. 5, 95727 (2015).

    Article  Google Scholar 

  4. J.A. Singh, S.H. Overbury, N.J. Dudney, M.J. Li, and G.M. Veith, ACS Catal. 2, 1138 (2012).

    Article  Google Scholar 

  5. S.C. Yan, Z.S. Li, and Z.G. Zou, Langmuir 26, 3894 (2010).

    Article  Google Scholar 

  6. H. Xu, J. Yan, Y.G. Xu, Y.H. Song, H.M. Li, J.X. Xia, C.J. Huang, and H.L. Wan, Appl. Catal. B 129, 182 (2013).

    Article  Google Scholar 

  7. S.W. Zhang, J.X. Li, M.Y. Zeng, G.X. Zhao, J.Z. Xu, W.P. Hu, and X.K. Wang, ACS Appl. Mater. Interfaces 5, 12735 (2013).

    Article  Google Scholar 

  8. S. Ye, L.G. Qiu, Y.P. Yuan, Y.J. Zhu, J. Xia, and J.F. Zhu, J. Mater. Chem. A 1, 3008 (2013).

    Article  Google Scholar 

  9. K. Sivula, F.L. Formal, and M. Gratzel, Chemsuschem 4, 432 (2011).

    Article  Google Scholar 

  10. F. Shi, M.K. Tse, M.M. Pohl, A. Bruckner, and S.M. Zhang, Angew. Chem. Int. Ed. 46, 8866 (2007).

    Article  Google Scholar 

  11. A.K. Srivastava, P. Sachan, C. Samanta, K. Mukhopadhyay, and A. Sharma, Appl. Surf. Sci. 288, 215 (2014).

    Article  Google Scholar 

  12. Y.J. Lin, S. Zhou, S.W. Sheehan, and D.W. Wang, J. Am. Chem. Soc. 133, 2398 (2011).

    Article  Google Scholar 

  13. B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, and J. Bisquert, J. Am. Chem. Soc. 134, 4294 (2012).

    Article  Google Scholar 

  14. W. Wu, S.F. Zhang, X.H. Xiao, J. Zhou, F. Ren, L.L. Sun, and C.Z. Jiang ACS Appl. Mater. Interfaces 4, 3602 (2012).

    Article  Google Scholar 

  15. Y. Liu, L. Yu, Y. Hu, C. Guo, F. Zhang, and X.W. Lou, Nanoscale 4, 183 (2012).

    Article  Google Scholar 

  16. L.M. He, L.Q. Jing, Z.J. Li, W.T. Sun, and C. Liu, RSC Adv. 3, 7438 (2013).

    Article  Google Scholar 

  17. S. Guo, G.K. Zhang, Y.D. Guo, and J.C. Yu, Carbon 60, 437 (2013).

    Article  Google Scholar 

  18. Y.J. Zhang, D.K. Zhang, W.M. Guo, and S.J. Chen, J. Alloys Compd. 685, 84 (2016).

    Article  Google Scholar 

  19. J. Theerthagiri, R.A. Senthil, A. Priya, J. Madhavan, R.J.V. Michael, and M. Ashokkumar, RSC Adv. 4, 38222 (2014).

    Article  Google Scholar 

  20. N. Limchoowong, P. Sricharoen, Y. Areerob, P. Nuengmatcha, T. Sripakdee, S. Techawongstien, and S. Chanthai, Food Chem. 230, 388 (2017).

    Article  Google Scholar 

  21. S.-Q. Liu, Environ. Chem. Lett. 10, 209 (2012).

    Article  Google Scholar 

  22. W. Wu, C. Jiang, and V.A.L. Roy, Nanoscale 7, 38 (2015).

    Article  Google Scholar 

  23. P. Jayakrishnan and M.T. Ramesan, Polym. Bull. 74, 3179 (2017).

    Article  Google Scholar 

  24. A. Demortiere, P. Panissod, B.P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Begin-Colin, Nanoscale 3, 225 (2011).

    Article  Google Scholar 

  25. W. Wu, X.H. Xiao, F. Ren, S.F. Zhang, and C.Z. Jiang, J. Low Temp. Phys. 168, 306 (2012).

    Article  Google Scholar 

  26. Z. Jiang, D. Jiang, Z. Yan, D. Liu, K. Qian, and J. Xie, Appl. Catal. B: Environ. 170–171, 195 (2015).

    Article  Google Scholar 

  27. S.-Z. Wu, K. Li, and W.-D. Zhang, Appl. Surf. Sci. 324, 324 (2015).

    Article  Google Scholar 

  28. S.S. Duan, G.S. Han, Y.H. Su, X.Y. Zhang, Y.Y. Liu, X.L. Wu, and B.J. Li, Langmuir 32, 6272 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (11674001), Anhui Provincial Natural Science Foundation (1708085MA07), the Opening Project of State Key Laboratory of High-Performance Ceramics and Superfine Microstructure (SKL201607SIC), and in part by the National Natural Science Foundation of China (11174002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Yang, X. & Li, G. Magnetically Separable Fe2O3/g-C3N4 Nanocomposites with Cocoon-Like Shape: Magnetic Properties and Photocatalytic Activities. J. Electron. Mater. 47, 672–676 (2018). https://doi.org/10.1007/s11664-017-5835-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5835-8

Keywords

Navigation