Skip to main content
Log in

Study on the Tensile Creep Behavior of Carbon Nanotubes-Reinforced Sn-58Bi Solder Joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The microstructure and tensile creep behavior of plain Sn-58Bi solder and carbon nanotubes (CNTs)-reinforced composite solder joints were investigated. The stress exponent n under different stresses and the creep activation energy Q c under different temperatures of solder joints were obtained by an empirical equation. The results reveal that the microstructure of the composite solder joint is refined and the tensile creep resistance is improved by CNTs. The improvement of creep behavior is due to the microstructural change of the composite solder joints, since the CNTs could provide more obstacles for dislocation pile-up, which enhances the values of the stress exponent and the creep activation energy. The steady-state tensile creep rates of plain solder and composite solder joints are increased with increasing temperature and applied stress. The tensile creep constitutive equations of plain solder and composite solder joints are written as \( \dot{\varepsilon }_{s1} = 14.94\left( {\sigma /G} \right)^{3.7} \exp \left( { - \frac{81444}{RT}} \right) \) and \( \dot{\varepsilon }_{s2} = 2.5\left( {\sigma /G} \right)^{4.38} \exp \left( { - \frac{101582}{RT}} \right) \), respectively. The tensile creep mechanism of the solder joints is the effects of lattice diffusion determined by dislocation climbing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lall, D. Zhang, and V. Yadav, Microelectron. Reliab. 62, 4 (2016).

    Article  Google Scholar 

  2. L. Yang, J.G. Ge, Y.C. Zhang, J. Dai, H.X. Liu, and J.C. Xiang, J. Electron. Mater. 45, 3766 (2016).

    Article  Google Scholar 

  3. S. Xu, Y.C. Chan, K.L. Zhang, and K.C. Yung, J. Alloys Compd. 595, 92 (2014).

    Article  Google Scholar 

  4. G. Chen, H. Peng, V.V. Silberschmidt, Y.C. Chan, C.Q. Liu, and F.S. Wu, J. Alloys Compd. 685, 680 (2016).

    Article  Google Scholar 

  5. L. Shen, P. Lu, S.J. Wang, and Z. Chen, J. Alloys Compd. 574, 98 (2013).

    Article  Google Scholar 

  6. Q.K. Zhang and Z.F. Zhang, Mater. Sci. Eng. A 528, 2686 (2011).

    Article  Google Scholar 

  7. L.Z. Yang, W. Zhou, Y.H. Liang, W.Q. Cui, and Mater PingWu, Sci. Eng. A. 642, 7 (2015).

    Article  Google Scholar 

  8. A.K. Gain and L.C. Zhang, J. Mater. Sci.: Mater. Electron. 27, 781 (2017).

    Google Scholar 

  9. T.W. Hu, Y. Li, Y.C. Chan, and F.S. Wu, Microelectron. Reliab. 55, 1226 (2015).

    Article  Google Scholar 

  10. Y.W. Shi, Y.F. Yan, J.P. Liu, Z.D. Xia, Y.P. Lei, F. Guo, and X.Y. Li, J. Electron. Mater. 38, 1866 (2009).

    Article  Google Scholar 

  11. Y.W. Shi, J.P. Liu, Y.F. Yan, Z.D. Xia, Y.P. Lei, F. Guo, and X.Y. Li, J. Electron. Mater. 37, 507 (2008).

    Article  Google Scholar 

  12. A.A. El-Daly, A.E. Hammada, G.S. Al-Ganainy, and M. Ragab, Mater. Sci. Eng. A 608, 130 (2014).

    Article  Google Scholar 

  13. A.E. Hammad, Mater. Des. 52, 663 (1963).

    Article  Google Scholar 

  14. L. Yang, Y.C. Zhang, J. Dai, Y.F. Jing, J.G. Ge, and N. Zhang, Mater. Des. 67, 209 (2015).

    Article  Google Scholar 

  15. S.M.L. Nai, J. Wei, and M. Gupta, J. Alloys Compd. 473, 100 (2009).

    Article  Google Scholar 

  16. Y.D. Han, L. Chen, H.Y. Jing, S.M.L. Nai, and J. Wei, J. Electron. Mater. 42, 3559 (2013).

    Article  Google Scholar 

  17. Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, and J. Wei, J. Mater. Sci.: Mater. Electron. 23, 315 (2011).

    Google Scholar 

  18. F.J. Wang, L.L. Zhou, X.J. Wang, and P. He, J. Alloys Compd. 688, 639 (2016).

    Article  Google Scholar 

  19. X.Z. Li, Y. Ma, W. Zhou, and P. Wu, Mater. Sci. Eng. A 684, 328 (2017).

    Article  Google Scholar 

  20. P. Yao, X.Y. Li, X.B. Liang, and B. Yu, Mater Sci Semi. Pro. 58, 39 (2017).

    Article  Google Scholar 

  21. Y.M. Zhang, H.L. Zhu, M. Fujiwara, J.Q. Xua, and M. Dao, Scrip. Mater. 68, 607 (2013).

    Article  Google Scholar 

  22. A.A. El-Daly, A.M. El-Taher, and T.R. Dalloul, J. Alloys Compd. 55, 309 (2014).

    Google Scholar 

  23. L. Shen, P. Septiwerdani, and Z. Chen, Mater. Sci. Eng. A 558, 253 (2012).

    Article  Google Scholar 

  24. Y.C. Zhang, L. Yang, J. Dai, J.G. Ge, G.L. Guo, and Z. Liu, Mater. Sci. Eng. A 63, 309 (2014).

    Google Scholar 

  25. S. Jadhav, K.N. Subramanian, T.R. Bieler, and J.P. Lucas, J. Electron. Mater. 30, 1197 (2001).

    Article  Google Scholar 

  26. Y.K. Kwon, S. Berber, and D. Tomanek, Phys. Rev. Lett. 92, 95 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Liu, H. & Zhang, Y. Study on the Tensile Creep Behavior of Carbon Nanotubes-Reinforced Sn-58Bi Solder Joints. J. Electron. Mater. 47, 662–671 (2018). https://doi.org/10.1007/s11664-017-5741-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5741-0

Keywords

Navigation