Skip to main content
Log in

Constitutive Relations for Creep in a SnCu-Based Composite Solder Reinforced with Ag Particles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

In the present work, the creep strain of the composite solder joint is measured using a stepped load creep test on a single specimen. Based on the creep strain tests, constitutive relations for the steady-state creep rate are determined for the Ag-particle-reinforced Sn-0.7Cu-based composite solder joint. In addition, creep strain tests on the Sn-0.7Cu solder joint are performed as a comparison. It is found that the activation energy of the Ag-particle-reinforced Sn-0.7Cu-based composite solder joint is higher than that of the Sn-0.7Cu solder joint. At the same time, the stress exponent of the Ag-particle-reinforced Sn-0.7Cu-based composite solder joint is higher than that of the Sn-0.7Cu solder joint. It is expected that the creep resistance of the Ag-particle-reinforced Sn-0.7Cu-based composite solder joint will be superior to that of the Sn-0.7Cu solder joint. Finally, the creep deformation mechanisms of the solder joint are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Guo, J.P. Lucas, and K.N. Subramanian, J. Mater. Sci. Mater. Electron. 12, 27 (2001). doi:10.1023/A:1011264527894

    Article  CAS  Google Scholar 

  2. F. Guo, J. Lee, S. Choi, J.P. Lucas, T.R. Bieler, and K.N. Subramanian, J. Electron. Mater. 30, 1073 (2001). doi:10.1007/s11664-001-0132-x

    Article  ADS  CAS  Google Scholar 

  3. H. Mavoori and S. Jin, J. Electron. Mater. 27, 1216 (1998). doi:10.1007/s11664-998-0072-9

    Article  ADS  CAS  Google Scholar 

  4. K. Mohankumar and A.A.O. Tay, Proceedings of 6th Electronics Packaging Technology Conference, IEEE, pp. 455–461 (2004).

  5. J.P. Liu, F. Guo, Y.F. Yan, W.B. Wang, and Y.W. Shi, J. Electron. Mater. 33, 958 (2004). doi:10.1007/s11664-004-0022-0

    Article  ADS  CAS  Google Scholar 

  6. D.C. Lin, T.S. Srivatsan, G.X. Wang, and R. Kovacevic, J. Mater. Eng. Performance, 16, 647 (2007). doi:10.1007/s11665-007-9092-5

    Article  CAS  Google Scholar 

  7. J.S. Lee, K.M. Chu, D.Y. Jeon, R. Patzelt, D. Manessis, and A. Ostmann, Proceedings of the 56th Electronic Components and Technology Conference, IEEE, pp. 244–249, 30 May– 2 June 2006.

  8. S.M.L. Nai, J. Wei, and M. Gupta, Thin Solid Films, 504, 401 (2006). doi:10.1016/j.tsf.2005.09.057

    Article  ADS  CAS  Google Scholar 

  9. E.K. Choi, K.Y. Lee, and T.S. Oh, J. Phys. Chem. Solids (2009), on-line.

  10. A. Lee, and K.N. Subramanian, J. Electron. Mater. 34, 1399 (2005). doi:10.1007/s11664-005-0197-z

    Article  ADS  CAS  Google Scholar 

  11. Y. Shi, J. Liu, Y. Yan, Z. Xia, Y. Lei, F. Guo, and X. Li (2008) J. Electron. Mater. 37, 507. doi:10.1007/s11664-007-0208-3

    Article  ADS  CAS  Google Scholar 

  12. W. Engelmaier, Global SMT Pack. 8, 44 (2008)

    Google Scholar 

  13. J.E. Bird, A.J. Mukherjee and J.E. Dorn. (1969) Quantitative Relation Between Properties and Microstructure. Israel University Press, 255.

    Google Scholar 

  14. Z.Mei, D.Grivas, M.C.Shine and J.W.Morris, Jr. (1990) J Electron. Mater. 19, 1273. doi:10.1007/BF02673342

    Article  ADS  CAS  Google Scholar 

  15. H.L. Reynolds, S.H. Kang and J.W. Morris, JR. (1999) J Electron. Mater. 28, 69. doi:10.1007/s11664-999-0197-5

    Article  ADS  CAS  Google Scholar 

  16. M.L. Huang (Ph.D. Thesis, Dalian University of Technology, 2001).

  17. Y.H. Pao, S.J.E. Badgley, R. Govila, and J. Browning, J. Electron. Pack. Trans. ASME, 115,147 (1993). doi:10.1115/1.2909310

    Article  Google Scholar 

  18. J. Cadek, Creep in Metallic Materials, Amsterdam: Elsevier, 1988, p.50

    Google Scholar 

  19. F.A. Mohamed, K.L. Murty, and J.W. Morris, Metall. Trans. 4, 935 (1973). doi:10.1007/BF02645593

    Article  CAS  Google Scholar 

  20. P. Adeva, G. Caruana, O.A. Ruano, and M. Torralba, Mater. Sci. Eng. A, 194, 17 (1995). doi:10.1016/0921-5093(94)09654-6

    Article  Google Scholar 

  21. V.I. Igoshev, and J.I. Kleiman, J. Electron. Mater. 29, 244 (2000). doi:10.1007/s11664-000-0150-0

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial support from the Key Program of the Department of Science and Technology of China (2006BAE03B02), the National Natural Science Foundation (50871004), and the Beijing Natural Science Foundation (2082003). The authors also wish to thank Dr. J.Z. Chen, Shell Global Solutions, Houston, for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaowu Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Yan, Y., Liu, J. et al. Constitutive Relations for Creep in a SnCu-Based Composite Solder Reinforced with Ag Particles. J. Electron. Mater. 38, 1866–1873 (2009). https://doi.org/10.1007/s11664-009-0840-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0840-1

Keywords

Navigation