Skip to main content
Log in

Effect of Joint Scale and Processing on the Fracture of Sn-3Ag-0.5Cu Solder Joints: Application to Micro-bumps in 3D Packages

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In 3-dimensional (3D) packages, a stack of dies is vertically connected to each other using through-silicon vias and very thin solder micro-bumps. The thinness of the micro-bumps results in joints with a very high volumetric proportion of intermetallic compounds (IMCs), rendering them much more brittle compared to conventional joints. Because of this, the reliability of micro-bumps, and the dependence thereof on the proportion of IMC in the joint, is of substantial concern. In this paper, the growth kinetics of IMCs in thin Sn-3Ag-0.5Cu joints attached to Cu substrates were analyzed, and empirical kinetic laws for the growth of Cu6Sn5 and Cu3Sn in thin joints were obtained. Modified compact mixed mode fracture mechanics samples, with adhesive solder joints between massive Cu substrates, having similar thickness and IMC content as actual micro-bumps, were produced. The effects of IMC proportion and strain rate on fracture toughness and mechanisms were investigated. It was found that the fracture toughness G C decreased with decreasing joint thickness (h Joint). In addition, the fracture toughness decreased with increasing strain rate. Aging also promoted alternation of the crack path between the two joint–substrate interfaces, possibly proffering a mechanism to enhance fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Huang, P. Kumar, I. Dutta, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 43, 4485 (2014).

    Article  Google Scholar 

  2. Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, and R. Sidhu, Eng. Fract. Mech. 131, 9 (2014).

    Article  Google Scholar 

  3. Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 41, 375 (2012).

    Article  Google Scholar 

  4. Z. Huang, P. Kumar, I. Dutta, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 43, 88 (2014).

    Article  Google Scholar 

  5. P. Kumar, Z. Huang, I. Dutta, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 41, 412 (2012).

    Article  Google Scholar 

  6. Z. Huang, P. Kumar, I. Dutta, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 43, 4485 (2014).

    Article  Google Scholar 

  7. R. Labie, F. Dosseul, T. Webers, C. Winters, V. Cherman, E. Beyne, and B. Vandevelde, in Proceedings of IEEE 61st Electronic Components and Technology Conference (ECTC), pp. 312–316 (2011).

  8. B.H. Kwak, M.H. Jeong, J.W. Kim, B. Lee, H.J. Lee, and Y.B. Park, Microelectron. Eng. 89, 50 (2012).

    Article  Google Scholar 

  9. G.T. Lim, B.J. Kim, K. Lee, J. Kim, Y.C. Joo, and Y.B. Park, J. Electron. Mater. 38, 2228 (2009).

    Article  Google Scholar 

  10. B. Ebersberger and C. Lee, in Proceedings of IEEE 58st Electronic Components and Technology Conference (ECTC), pp. 59–65 (2008).

  11. Z. Chen, B. Talebanpour, Z. Huang, P. Kumar, and I. Dutta, in Proceedings of 15th IEEE Electronics Packaging Technology Conference (EPTC), pp. 534–537 (2013).

  12. S.M. Hayes, N. Chawla, and D.R. Frear, Microelectron. Reliab. 49, 269 (2009).

    Article  Google Scholar 

  13. K. Sinha, J. Varghese, and A. Dasgupta, Microelectron. Reliab. 54, 610 (2014).

    Article  Google Scholar 

  14. V.M.F. Marques, C. Johnston, and P.S. Grant, Acta Mater. 61, 2460 (2013).

    Article  Google Scholar 

  15. X. Deng, N. Chawla, K.K. Chawla, and M. Koopman, Acta Mater. 52, 4291 (2004).

    Article  Google Scholar 

  16. Ping-Feng Yang, Yi-Shao Lai, Sheng-Rui Jian, Jiunn Chen, and Rong-Sheng Chen, Mater. Sci. Eng., A 485, 305 (2008).

    Article  Google Scholar 

  17. E. Orowan, J. Nye, and W. Cairns, Mos Arm. Res. Dept. Rept. 16, 35 (1945).

    Google Scholar 

  18. P. Zimprich, A. Betzwar-Kotas, G. Khatibi, B. Weiss, and H. Ipser, J. Mater. Sci Mater El. 19, 383 (2008).

    Article  Google Scholar 

  19. Z. Huang, I. Dutta, and G. S. Subbarayan, in Proceedings of ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems (InterPACK), pp. 1–7 (2013).

  20. L.M. Yang, Q.K. Zhang, and Z.F. Zhang, Scripta Mater. 67, 637 (2012).

    Article  Google Scholar 

  21. B.H. Kwak, M.H. Jeong, J.W. Kim, B. Lee, H.J. Lee, and Y.B. Park, Microelectron. Eng. 89, 65 (2012).

    Article  Google Scholar 

  22. Y.C. Chan, A.C.K. So, and J.K.L. Lai, Mater. Sci. Eng., B 55, 5 (1998).

    Article  Google Scholar 

  23. M. Arcan, Z. Hashin, and A. Voloshin, Exp. Mech. 28, 141 (1978).

    Article  Google Scholar 

  24. P. Borgesen, L. Yin, and R. Kondos, in Proceedings of 2007 Electronic Components and Technology Conference (ECTC), p. 136 (2007).

  25. U. Gosele and K.N. Tu, J. Appl. Phys. 53, 3252 (1982).

    Article  Google Scholar 

  26. Z. Mei, A.J. Sunwoo, and J.W. Morris, Metall. Trans. A 23, 857 (1992).

    Article  Google Scholar 

  27. G.Y. Li and Y.C. Chan, Phys. Status Solidi A 166, R13 (1998).

    Article  Google Scholar 

  28. B. Chao, S.H. Chae, X. Zhang, K.H. Lu, J. Im, and P.S. Ho, Acta Mater. 55, 2805 (2007).

    Article  Google Scholar 

  29. X. Deng, G. Piotrowski, J.J. Williams, and N. Chawla, J. Electron. Mater. 32, 1403 (2003).

    Article  Google Scholar 

  30. J.W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29, 63 (1991).

    Article  Google Scholar 

  31. H.L.J. Pang and C.W. Seetoh, Eng. Fract. Mech. 57, 57 (1997).

    Article  Google Scholar 

  32. Z. Suo and J.W. Hutchinson, Mater. Sci. Eng. A. 107, 135 (1989).

    Article  Google Scholar 

  33. B. Vandevelde, R. Labie, V. Cherman, T. Webers, C. Winters, E. Beyne and F. Dosseul, in 12th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE (2011).

  34. Y. Wang, S.-H. Chae, J. Im and P.S. Ho, in Proceedings of theIEEE 63rd Electronic Components and Technology Conference (ECTC), pp. 1953–1958 (2013).

  35. P. Kumar, I. Dutta, V. Sarihan, D.R. Frear, and M. Renavikar, in Proceedings of the Intersociety Conference on Thermal And Thermomechanical Phenomena In Electronic Systems (ITHERM), pp. 660–667, (2008).

  36. M.Y. He, A. Barret, A. Evans, and J. Hutchinson, J. Am. Ceram. Soc. 74, 767 (1991).

    Article  Google Scholar 

  37. M. He and J.W. Hutchinson, J. Appl. Mech. 56, 270 (1989).

    Article  Google Scholar 

  38. A.R. Akisanya and N.A. Fleck, Int. J. Fract. 58, 39 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebanpour, B., Huang, Z., Chen, Z. et al. Effect of Joint Scale and Processing on the Fracture of Sn-3Ag-0.5Cu Solder Joints: Application to Micro-bumps in 3D Packages. J. Electron. Mater. 45, 57–68 (2016). https://doi.org/10.1007/s11664-015-4066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4066-0

Keywords

Navigation