Skip to main content
Log in

Fracture of Sn-Ag-Cu Solder Joints on Cu Substrates: I. Effects of Loading and Processing Conditions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

During service, microcracks form inside solder joints, making microelectronic packages highly prone to failure on dropping. Hence, the fracture behavior of solder joints under drop conditions at high strain rates and under mixed-mode conditions is a critically important design consideration for robust joints. This study reports on the effects of joint processing and loading conditions on the microstructure and fracture response of Sn-3.8%Ag-0.7%Cu (SAC387) solder joints attached to Cu substrates. The impact of parameters which control the microstructure (reflow condition, aging) as well as loading conditions (strain rate and loading angle) are explicitly studied. A methodology based on the calculation of the critical energy release rate, G C, using compact mixed-mode (CMM) samples was developed to quantify the fracture toughness of the joints under conditions of adhesive (i.e., interface-related) fracture. In general, higher strain rate and increased mode-mixity resulted in decreased G C. G C also decreased with increasing dwell time at reflow temperature, which produced a thicker intermetallic layer at the solder–substrate interface. Softer solders, produced by slower cooling following reflow, or post-reflow aging, showed enhanced G C. The sensitivity of the fracture toughness to all of the aforementioned parameters reduced with an increase in the mode-mixity. Fracture mechanisms, elucidating the effects of the loading conditions and process parameters, are briefly highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Frear and P.T. Vianco, Metall. Mater. Trans. A 25, 1509 (1994).

    Article  Google Scholar 

  2. A. Grusd, Proceedings of Surface Mount International Conference (Edina, MN, USA, 1998), p. 648.

  3. Y. Kariya and W. J. Plumbridge, Proceedings 7th Symposium on Micro-joining and Assembly Technology in Electronics (Yokohama, Japan, 2001), p. 383.

  4. P. Kumar, I. Dutta, V. Sarihan, D. R. Frear, and M. Renavikar, Thermal and Thermomechanical Phenomena in Electronic Systems, 2008. ITHERM 11th (2008), p. 660.

  5. P. Kumar, Z. Huang, and I. Dutta, Proceedings of InterPACK2009, Paper No. 89205 (IEEE/ASME), CD-ROM.

  6. I. Dutta, J. Electron. Mater. 32, 1 (2003).

    Article  Google Scholar 

  7. I. Dutta, D. Pan, R.A. Marks, and S.G. Jadhav, Mater. Sci. Eng. A 410–411C, 48 (2005).

    Google Scholar 

  8. I. Dutta, P. Kumar, and G. Subbarayan, J. Mater. 61, 29 (2009).

    CAS  Google Scholar 

  9. S.M. Hayes, N. Chawla, and D.R. Frear, Microelectron. Reliab. 49, 269 (2009).

    Article  CAS  Google Scholar 

  10. K.S. Siow and M. Manoharan, Mater. Sci. Eng. A 404A, 244 (2005).

    Google Scholar 

  11. S.M. Joo and H.K. Kim, Mater. Sci. Eng. A 528, 2711 (2011).

    Article  Google Scholar 

  12. X. Li, F. Li, F. Guo, and Y. Shi, J. Electron. Mater. 40, 51 (2011).

    Article  Google Scholar 

  13. S.V. Nadimpalli and J.K. Spelt, Mater. Sci. Eng. A 527, 724 (2010).

    Article  Google Scholar 

  14. D.S. Liu, C.Y. Kuo, C.L. Hsu, G.S. Shen, Y.R. Chen, and K.C. Lo, Mater. Sci. Eng. A 494, 196 (2008).

    Article  Google Scholar 

  15. Y.S. Lai, H.C. Chang, and C.L. Yeh, Microelectron. Reliab. 47, 2179 (2007).

    Article  CAS  Google Scholar 

  16. K. Sweatman, S. Suenaga and T. Nishimura, Proceedings Pan Pacific (2008).

  17. R. S. Pandher, B. G. Lewis, R. Vangaveti, and B. Singh, Proceedings 57th Electronic Components and Packaging Technology (ECTC) (Reno, May 29–June 1, 2007).

  18. P. Ratchev, B. Vandevelde, and B. Verlinden, Proceedings of IPC/JEDEC 10th International Conference on Lead-Free Electronic Components and Assemblies (Brussels, Belgium, October 17–19, 2005).

  19. J.J. Sundelin, S.T. Nurmi, T.K. Lepisto, and E.O. Ristolainen, J. Electron. Mater. 35, 1600 (2006).

    Article  CAS  Google Scholar 

  20. H.T. Lee, M.H. Chen, H.M. Jao, and T.L. Liao, Mater. Sci. Eng. A 358, 134 (2003).

    Article  Google Scholar 

  21. K.S. Lin, H.Y. Huang, and C.P. Chou, J. Mater. Eng. Perform. 18, 182 (2009).

    Article  CAS  Google Scholar 

  22. D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar, A. Prasad, B.W. Grimsley, and H.B. Tejada, Mater. Sci. Eng. A 460–461, 595 (2007).

    Google Scholar 

  23. H. Nayeb-Hashemi and P. Yang, Int. J. Fatigue 23, S325 (2001).

    Article  CAS  Google Scholar 

  24. P. Kumar, Z. Huang, I. Dutta, R. Sidhu, M. Renavikar, and R. Mahajan, J. Elec. Mater. (in Review).

  25. M. Arcan, Z. Hashin, and A. Voloshin, Exp. Mech. 28, 141 (1978).

    Article  Google Scholar 

  26. X. Long, R. Guduru, I. Dutta, V. Sarihan, and D.R. Frear, J. Electron. Mater. 37, 189 (2008).

    Article  CAS  Google Scholar 

  27. J.W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29, 63 (1991).

    Article  Google Scholar 

  28. H.L.J. Pang and C.W. Seetoh, Eng. Fract. Mech. 57, 57 (1997).

    Article  Google Scholar 

  29. X.Q. Shi, X.R. Zhang, and J.H.L. Pang, Int. J. Adhes. Adhes. 26, 249 (2006).

    Article  CAS  Google Scholar 

  30. ASTM E561-05, Annual Book of ASTM Standards 04.01 (ASTM International, PA, 2005), pp. 593–611.

  31. B.S. Majumdar and J. Ahmad, in Metal Ceramic Joining, ed. by P. Kumar and V.A. Greenhut (TMS, PA, 1991), p. 67.

  32. Z. Suo and J.W. Hutchinson, Mater. Sci. Eng. A 107, 135 (1989).

    Article  Google Scholar 

  33. A.G. Evans, B.J. Dalgleish, M. He, and J.W. Hutchinson, Acta Metall. 37, 3249 (1989).

    Article  CAS  Google Scholar 

  34. K. Wu, N. Wade, J. Cui, and K. Miyahara, J. Electron. Mater. 32, 5 (2003).

    Article  CAS  Google Scholar 

  35. J.G. Maveety, P. Liu, J. Vijayen, F. Hua, and E.A. Sanchez, J. Electron. Mater. 33, 1355 (2004).

    Article  CAS  Google Scholar 

  36. P. Kumar, Z. Huang, S. Chavali, D. Chan, I. Dutta, G. Subbarayan, and V. Gupta, IEEE Comp. Packag. Technol. (accepted, July 2011).

  37. S. Choi, J.P. Lucas, K.N. Subramanian, and T.R. Bieler, J. Mater. Sci.: Mater. Electron. 11, 497 (2000).

    Article  CAS  Google Scholar 

  38. A.C.K. So, Y.C. Chan, and J.K.L. Lai, IEEE Trans. Compon. Packag. Manuf. Technol. 20B, 161 (1997).

    Google Scholar 

  39. A.G. Evans, J.W. Hutchinson, and Y. Wei, Acta Mater. 47, 4093 (1999).

    Article  CAS  Google Scholar 

  40. M.Y. He, A. Bartlett, A. Evans, and J.W. Hutchinson, J. Am. Ceram. Soc. 74, 767 (1991).

    Article  CAS  Google Scholar 

  41. S.H. Choi, B.G. Song, K.J. Kang, and N.A. Fleck, Fatigue Fract. Eng. Mater. Struct. 23, 1 (2001).

    Google Scholar 

  42. J. Faleskog and C.F. Shih, J. Mech. Phys. Solids 45, 21 (1997).

    Article  CAS  Google Scholar 

  43. K. Nogita, Intermetallics 18, 145 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Kumar, P., Dutta, I. et al. Fracture of Sn-Ag-Cu Solder Joints on Cu Substrates: I. Effects of Loading and Processing Conditions. J. Electron. Mater. 41, 375–389 (2012). https://doi.org/10.1007/s11664-011-1769-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1769-8

Keywords

Navigation