Skip to main content
Log in

Size effects in small scaled lead-free solder joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to the ongoing miniaturization in modern microelectronics reliability and quality control of microelectronics devices will also depend on a detailed understanding of the complex mechanical and thermal of solder joints. Therefore the question of the occurrence of size effects or dimensionally induced constraints, which could change the mechanical properties of solder joints in small dimensions dramatically, came into focus of investigation. Tensile tests were performed to investigate the influence of joint size on the tensile strength and fracture strain. Strains across the solder joint were measured using a non-contacting laser speckle sensor. Scanning electron microscopy (SEM) was used to analyze the complex modes of fracture and crack propagation in the solder interconnect. The variation of the gap size influenced also the crack growth behavior. The observed behavior can be interpreted in terms of an existing theory for brazed joints to complement Finite Element Analysis that is usually used for a description of these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Plumbridge, R. Matela, A. Westwater, Structural Integrity and Reliability in Electronics. (Kluwer Academic Publishers, London, 2003)

    Google Scholar 

  2. N. Bonda, I. Noyan, IEEE Trans Comp Pack Manufact. Technol. 19A, 208 (1996)

    Article  Google Scholar 

  3. H. Lee, H. Lin, C. Lee, P. Chen, Mater. Sci. Eng. A 407, 36 (2005)

    Article  Google Scholar 

  4. W. Plumbridge, Soldering & Surf Mount Technol. 16(2), 13 (2004)

    Article  CAS  Google Scholar 

  5. H. Lee, M. Chen, Mater. Sci. Eng. A 333, 24 (2002)

    Article  Google Scholar 

  6. H. Lee, M. Chen, H. Jao, T. Liao, Mater. Sci. Eng. A 358, 134 (2003)

    Article  Google Scholar 

  7. K. Prakash, T. Sritharan, Mater. Sci. Eng. A 379, 277 (2004)

    Article  Google Scholar 

  8. Y. Shen, N. Chawla, E. Ege, X. Deng, Acta Mater. 53, 2633 (2005)

    Article  CAS  Google Scholar 

  9. W. Nix, Met. Trans. A 20, 2217 (1989)

    Article  Google Scholar 

  10. E. Arzt, Acta Mater. 46, 5611 (1998)

    Article  CAS  Google Scholar 

  11. A. Skipor, S. Harren, J. Botsis, J. Eng. Fract Mech. 52, 647 (1995)

    Article  Google Scholar 

  12. J. Cugnoni, J. Botsis, J. Janczak-Rusch, Adv. Eng. Mat. 8(3), 184 (2006)

    Article  CAS  Google Scholar 

  13. H. Saxton, A. West, C. Barrett, Met. Trans. 2, 999 (1971)

    Article  CAS  Google Scholar 

  14. A. West, H. Saxton, C. Barrett, Met. Trans. 2, 1009 (1971)

    Article  CAS  Google Scholar 

  15. H. Saxton, A. West, C. Barrett, Met. Trans. 2, 1019 (1971)

    Article  CAS  Google Scholar 

  16. E. Orowan, J. Nye, W. Cairns, MOS Arm. Res. Dept. Rept. 16, 35 (1945)

    Google Scholar 

  17. T. Courtney, Mechanical Behavior of Materials, (McGraw-Hill, 1990), p. 201

  18. D. Vogel, R. Kühnert, M. Dost, B. Michel, Trans. ASME J. Electr. Packaging. 124, 345 (2002)

    Article  CAS  Google Scholar 

  19. M. Anwander, B. Zagar, B. Weiss, H. Weiss, Exp. Mech. 1, 40 (2000)

    Google Scholar 

  20. B. Weiss, V. Gröger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, B. Zagar, Sens. Actuators. A 99, 172 (2000)

    Article  Google Scholar 

  21. M. Abtew, G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000)

    Article  Google Scholar 

  22. D. Frear, P. Vianco, Met. Mater. Trans. A 25, 1509 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This research is a contribution to the European COST Action 531. Financial support of the Austrian Science Foundation (FWF) under Project No. P-17346 is gratefully acknowledged. The authors thank D. Vogel and A. Gollhardt for their support using the SEM for fracture monitoring, data interpretation and helpful discussions; they also thank Ms. A. Ziering for the preparation of the solder joints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zimprich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimprich, P., Betzwar-Kotas, A., Khatibi, G. et al. Size effects in small scaled lead-free solder joints. J Mater Sci: Mater Electron 19, 383–388 (2008). https://doi.org/10.1007/s10854-007-9349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9349-7

Keywords

Navigation