Skip to main content
Log in

Sensor Performance of Nanostructured TiO2–Cr2O3 Thin Films Derived by a Particulate Sol–Gel Route with Various Cr:Ti Molar Ratios

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanocrystalline and nanostructured TiO2–Cr2O3 thin films and powders were prepared by a facile and straightforward aqueous particulate sol–gel route at low temperature of 400°C. The prepared sols showed a narrow particle size distribution with hydrodynamic diameter in the range of 17.7 nm to 19.0 nm. Moreover, the sols were stable over 4 months, with constant zeta potential measured during this period. The effect of the Cr:Ti molar ratio on the crystallization behavior of the products was studied. X-ray diffraction (XRD) analysis revealed that the powders crystallized at low temperature of 400°C, containing anatase-TiO2, rutile-TiO2, and Cr2O3 phases, depending on the annealing temperature and Cr:Ti molar ratio. Furthermore, it was found that Cr2O3 retarded the anatase to rutile transformation up to 800°C. The activation energy of crystallite growth was calculated to be in the range of 1.3 kJ/mol to 2.9 kJ/mol. Transmission electron microscopy (TEM) imaging showed that one of the smallest crystallite sizes was obtained for TiO2–Cr2O3 binary mixed oxide, being 5 nm at 500°C. Field-emission scanning electron microscopy (FESEM) analysis revealed that the deposited thin films had nanostructured morphology with average grain size in the range of 20 nm to 40 nm at 500°C. Thin films produced under optimized conditions showed excellent microstructural properties for gas sensing applications. They exhibited a remarkable response towards low concentrations of NO2 gas at low operating temperature of 200°C, resulting in increased thermal stability of sensing films as well as a decrease in their power consumption. Furthermore, calibration curves revealed that TiO2–Cr2O3 sensors followed the power law \({S = A[\mathrm{gas}]^{B}}\) (where S is the sensor response, the coefficients A and B are constants, and [gas] is the gas concentration) for two types of gas, exhibiting excellent capability for detection of low gas concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Karch, R. Birriger, and H. Gleiter, Nature 330, 556 (1987).

    Article  Google Scholar 

  2. T. Hisanaga, K. Harada, and K. Tanaka, J. Photochem. Photobiol. A 53, 113 (1990).

    Article  Google Scholar 

  3. R. Fretwell and P. Douglas, J. Photochem. Photobiol. A 143, 229 (2001).

    Article  Google Scholar 

  4. M.R. Mohammadi, R.R.M. Louca, D.J. Fray, and M.E. Welland, Sol. Energy 86, 2654 (2012).

    Article  Google Scholar 

  5. L. Kavan, M. Gratzel, J. Rathousky, and A. Zukal, J. Electrochem. Soc. 143, 394 (1996).

    Article  Google Scholar 

  6. A.M. Bakhshayesh, M.R. Mohammadi, and D.J. Fray, Electrochim. Acta 78, 384 (2012).

    Article  Google Scholar 

  7. M.R. Mohammadi, D.J. Fray, and M.C. Cordero-Cabrera, Sens. Actuators B 124, 74 (2007).

    Article  Google Scholar 

  8. R.E. Tanner, Y. Liang, and E.I. Altman, Surf. Sci. 506, 251 (2002).

    Article  Google Scholar 

  9. C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglier, Sens. Actuators B 68, 189 (2000).

    Article  Google Scholar 

  10. M.C. Carotta, M. Ferroni, D. Gnani, V. Guidi, M. Merli, G. Martinelli, M.C. Casale, and M. Notaro, Sens. Actuators B 58, 310 (1999).

    Article  Google Scholar 

  11. A.M. Ruiz, A. Cornet, K. Shimanoe, J.R. Morante, and N. Yamazoe, Sens. Actuators B 108, 34 (2005).

    Article  Google Scholar 

  12. S. Zhuiykov, W. Wlodarski, and Y. Li, Sens. Actuators B 77, 484 (2001).

    Article  Google Scholar 

  13. A.M. Ruiz, A. Cornet, K. Shimanoe, J.R. Morante, and N. Yamazoe, Sens. Actuators B 109, 7 (2005).

    Article  Google Scholar 

  14. M. Ferroni, M.C. Carotta, V. Guidi, G. Martinelli, F. Ronconi, M. Sacerdoti, and E. Traversa, Sens. Actuators B 77, 163 (2001).

    Article  Google Scholar 

  15. K. Galatsis, Y.X. Li, W. Wlodarski, E. Comini, G. Faglia, and G. Sberveglieri, Sens. Actuators B 77, 472 (2001).

    Article  Google Scholar 

  16. H. Yang, D. Zhang, and L. Wang, Sens. Actuators B 57, 674 (2002).

    Google Scholar 

  17. M.R. Mohammadi, M. Ghorbani, M.C. Cordero-cabrera, and D.J. Fray, J. Mater. Sci. 42, 4976 (2007).

    Article  Google Scholar 

  18. K.P. Biju and M.K. Jain, Sens. Actuators B 128, 407 (2008).

    Article  Google Scholar 

  19. M.R. Mohammadi and D.J. Fray, Sens. Actuators B 155, 568 (2011).

    Article  Google Scholar 

  20. A. Trinchi, Y.X. Li, W. Wlodarski, S. Kaciulis, L. Pandolfi, S. Viticoli, E. Comini, and G. Sberveglieri, Sens. Actuators B 95, 145 (2003).

    Article  Google Scholar 

  21. M.R. Mohammadi and D.J. Fray, Sens. Actuators B 150, 631 (2010).

    Article  Google Scholar 

  22. Y. Li, W. Wlodarski, K. Galatsis, S.H. Moslih, J. Cole, S. Russo, and N. Rockelmann, Sens. Actuators B 83, 160 (2002).

    Article  Google Scholar 

  23. A.M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J.R. Morante, and N. Yamazoe, Sens. Actuators B 93, 509 (2003).

    Article  Google Scholar 

  24. M.R. Mohammadi, M.C. Cordero-Cabrera, D.J. Fray, and M. Ghorbani, Sens. Actuators B 120, 86 (2006).

    Article  Google Scholar 

  25. B.D. Cullity, Elements of X-ray Diffraction (London: Addison-Wesley, 1978), p. 99.

    Google Scholar 

  26. M. Jarcho, C.H. Bolen, and R.H. Doremus, J. Mater. Sci. 11, 2027 (1976).

    Article  Google Scholar 

  27. M.R. Mohammadi, D.J. Fray, and A. Mohammadi, Microporous Mesoporous Mater. 112, 392 (2008).

    Article  Google Scholar 

  28. H.O. Toplan and Y. Karakas, J. Ceram. Int. 2, 911 (2002).

    Article  Google Scholar 

  29. T.G. Nenov and S.P. Yordanov, Ceramic Sensors Technology and Applications (Lancaster, PA: Technomic, 1996), p. 135.

    Google Scholar 

  30. G.H. Takaoka, T. Hamamo, K. Fukushima, J. Matsuo, and I. Yamada, Nucl. Instrum. Methods Phys. Res. B 121, 503 (1997).

    Article  Google Scholar 

  31. S. Capone, R. Rella, P. Siciliano, and L. Vasanelli, J. Thin Solid Films 350, 264 (1999).

    Article  Google Scholar 

  32. N. Bonini, M.C. Carotta, A. Chiorino, V. Guidi, C. Malagu, G. Martinelli, L. Paglialonga, and M. Sacerdoti, Sens. Actuators B 68, 274 (2000).

    Article  Google Scholar 

  33. G. Sberveglieri, E. Comini, G. Faglia, M.Z. Atashbar, and W. Wlodarski, Sens. Actuators B 66, 139 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Mr. David Nicol for his help with TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.R. Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Fray, D. Sensor Performance of Nanostructured TiO2–Cr2O3 Thin Films Derived by a Particulate Sol–Gel Route with Various Cr:Ti Molar Ratios. J. Electron. Mater. 43, 3922–3932 (2014). https://doi.org/10.1007/s11664-014-3301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3301-4

Keywords

Navigation