Skip to main content
Log in

Preparation and characterisation of nanostructural TiO2–Ga2O3 binary oxides with high surface area derived form particulate sol–gel route

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanostructured and nanoporous TiO2–Ga2O3 films and powders with various Ti:Ga atomic ratios and high specific surface area (SSA) have been prepared by a new straightforward particulate sol–gel route. Titanium isopropoxide and gallium (III) nitrate hydrate were used as precursors and hydroxypropyl cellulose (HPC) was used as a polymeric fugitive agent (PFA) in order to increase the SSA. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that powders contained both rhombohedral α-Ga2O3 and monoclinic β-Ga2O3 phases, as well as anatase and rutile. It was observed that the Ga2O3 formed from the nitrate precursor retarded anatase-to-rutile transformation. Furthermore, transmission electron microscope (TEM) analysis also showed that Ga2O3 hindered the crystallisation and crystal growth of powders. SSA of powders, as measured by Brunauer–Emmett–Teller (BET) analysis, was enhanced by introducing Ga2O3. Ti:Ga = 50:50 (at%/at%) binary oxide annealed at 500 °C produced the smallest crystallite size (2 nm), the smallest grain size (18 nm), the highest SSA (327.8 m2/g) and the highest roughness. Ti:Ga = 25:75 (at%/at%) annealed at 800 °C showed the smallest crystallite size (2.4 nm) with 32 nm average grain size and 40.8 m2/g surface area. Ti:Ga = 75:25 (at%/at%) annealed at 800 °C had the highest SSA (57.4 m2/g) with 4.4 nm average crystallite size and 32 nm average grain size. One of the smallest crystallite size and one of the highest SSA reported in the literature is obtained, and they can be used in many applications in areas from optical electronics to gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zheng L, Xu M, Xu T (2000) Sens Actuat B 66:28

    Article  Google Scholar 

  2. Keshmiri M, Mohseni M, Troczynski T (2004) Appl Catal B: Environ 53:209

    Article  CAS  Google Scholar 

  3. Ivanova T, Harizanova A, Surtchev M, Nenova Z (2003) Solar Energy Mater Solar Cells 76:591

    Article  CAS  Google Scholar 

  4. Galatsis K, Li YX, Wlodarski W, Comini E, Faglia G, Sberveglieri G (2001) Sens Actuat B 77:472

    Article  Google Scholar 

  5. Ruiz AM, Arbiol J, Cornet A, Shimanoe K, Morante JR, Yamazoe N (2005) Mater Res Soc 828:A4.10.1

    Google Scholar 

  6. Trinchi A, Wlodarski W, Li YX (2004) Sens Actuat B 100:94

    Article  CAS  Google Scholar 

  7. Schwebel T, Fleischer M, Meixner H, Kohl CD (1998) Sens Actuat B 49:46

    Article  Google Scholar 

  8. Hayakawa I, Iwamoto Y, Kikuta K, Hirano S (2000) Sens Actuat B 62:55

    Article  Google Scholar 

  9. Ferroni M, Carotta MC, Guidi V, Martinelli G, Ronconi F, Sacerdoti M, Traversa E (2001) Sens Actuat B 77:163

    Article  Google Scholar 

  10. Bonini N, Carotta MC, Chiorini A, Guidi V, Malagu C, Martinelli G, Paglialonga L, Sacerdoti M (2000) Sens Actuat B 68:274

    Article  Google Scholar 

  11. Yang H, Zhang D, Wang L (2002) Sens Actuat B 57:674

    CAS  Google Scholar 

  12. Li Y, Wlodarski W, Galatsis K, Moslih SH, Cole J, Russo S, Rockelmann N (2002) Sens Actuat B 83:160

    Article  Google Scholar 

  13. Zhuiykov S, Wlodarski W, Li Y (2001) Sens Actuat B 77:484

    Article  Google Scholar 

  14. Trinchi A, Li YX, Wlodarski W, Kaciulis S, Pandolfi L, Russo SP, Duplessis J, Viticoli S (2003) Sens Actuat B 108:263

    Article  CAS  Google Scholar 

  15. Ratko A, Babushkin O, Baran A, Baran S (1998) J Eur Ceram Soc 18:2227

    Article  CAS  Google Scholar 

  16. Li YX, Wang D, Yin QR, Galatsis K, Wlodarski W (2000) Proceeding of the 2000 conference on optoelectronic and microelectronic materials and devices (COMMAD 2000), Melbourne, Australia, December 2000

  17. Reddy BM, Ganesh I, Reddy EP, Fernandez A, Smirniotis PG (2001) J Phys Chem B 105:6227

    Article  CAS  Google Scholar 

  18. Reddy BM, Ganesh I, Khan A (2004) J Mol Catal A: Chem 233:295

    Article  CAS  Google Scholar 

  19. Mohammadi MR, Cordero-Cabrera MC, Fray DJ, Ghorbani M (2006) Sens Actuat B 120:86

    Article  CAS  Google Scholar 

  20. Mohammadi MR, Ghorbani M, Cordero-Cabrera MC, Fray DJ (2006) J Sol–Gel Sci Technol 40:15

    Article  CAS  Google Scholar 

  21. Kishi A, Toraya H (2004) Rigaku J 21:25

    CAS  Google Scholar 

  22. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley Publishing Company, Inc, London, p 99

    Google Scholar 

  23. Socrates G (1994) Infrared characteristic group frequencies: tables and charts, 2nd edn. John Wiley & Sons, England, p 62–237

    Google Scholar 

  24. Ivanova T, Harizanova A, Surtchev M (2002) Mater Lett 55:327

    Article  CAS  Google Scholar 

  25. Zhang J, Liu Z, Lin C, Lin J (2005) J Crystal Growth 280:99

    Article  CAS  Google Scholar 

  26. JCPDS PDF-2 pattern 02-0387

  27. JCPDS PDF-2 pattern 88-1172

  28. JCPDS PDF-2 pattern 76-0573

  29. JCPDS PDF-2 pattern 06-0503

  30. Levin EM, McMurdie HF (1975) Phase diagrams for ceramists. The American Ceramic Society, USA, p 150

    Google Scholar 

  31. Kamiya S, Tilley RJD (1977) J Solid State Chem 22:205

    Article  CAS  Google Scholar 

  32. Rozdin IA, Plotkin SS, Plyushchev VE, Sorokin NI (1975) Neorg Mater 11:178

    CAS  Google Scholar 

  33. Weast R (1976) Handbook of chemistry and physics, 57th edn. CRC press Inc., Ohio, p B-114

    Google Scholar 

  34. Patil KC, Aruna ST, Mimani T (2002) Curr Opin Solid State Mater Sci 6:507

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Mr. David Nicol for his help with TEM analysis. One of the authors, M.R. Mohammadi, would like to acknowledge both British Council in Iran and Iranian’s Ministry of Science, Research and Technology for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, M.R., Ghorbani, M., Cordero-Cabrera, M.C. et al. Preparation and characterisation of nanostructural TiO2–Ga2O3 binary oxides with high surface area derived form particulate sol–gel route. J Mater Sci 42, 4976–4986 (2007). https://doi.org/10.1007/s10853-006-0380-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0380-5

Keywords

Navigation