Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of Electronic Materials
  3. Article
Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient liquid-phase Joints Used for Power Die Attachment
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Grain Boundary Diffusion of Ni through Au-Doped Ni3Sn2 Intermetallic Compound for Technological Applications

20 October 2021

Z. X. Zhu, Vengudusamy Renganathan & C. R. Kao

Solid-State Spalling of Ag3Sn in an Eutectic SnPb Solder Joint with an Ag Thin Film/Ge Cell

29 June 2018

Xiaoliang Ji, Rong An, … Chongyang Cai

Mechanism of the Electromigration in Ag-Pd Alloy Bonding Wires

30 July 2018

Tung-Han Chuang & Chun-Hao Chen

Fracture mechanism of microporous Ag-sintered joint in a GaN power device with Ti/Ag and Ni/Ti/Ag metallization layer at different thermo-mechanical stresses

25 February 2021

Dongjin Kim, Sangmin Lee, … Katsuaki Suganuma

Thermal Ageing Studies of Sintered Micron-Silver (Ag) Joint as a Lead-Free Bonding Material

30 July 2019

K. S. Siow & S. T. Chua

A Predictive Model for Thermal Conductivity of Nano-Ag Sintered Interconnect for a SiC Die

08 February 2019

Zhenyu Zhao, Hongqiang Zhang, … Y. Norman Zhou

Experimental Observation of Diffusion Reaction in the (Sn-Ag)/Cu System at Solid-State Temperatures

04 January 2019

M. Nakayama, M. O & M. Kajihara

Indium thermal interface material microstructure as a function of thermal history and bonding metallization

14 September 2022

Peter McClure & Yujia Wang

Experimental and Theoretical Studies of Cu-Sn Intermetallic Phase Growth During High-Temperature Storage of Eutectic SnAg Interconnects

18 September 2020

A. Morozov, A. B. Freidin, … T. Hauck

Download PDF
  • Open Access
  • Published: 22 January 2014

Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient liquid-phase Joints Used for Power Die Attachment

  • J. F. Li1,
  • P. A. Agyakwa1 &
  • C. M. Johnson1 

Journal of Electronic Materials volume 43, pages 983–995 (2014)Cite this article

  • 1019 Accesses

  • 22 Citations

  • Metrics details

Real Si insulated gate bipolar transistors with conventional Ni/Ag metallization and dummy Si chips with thickened Ni/Ag metallization have both been bonded, at 250°C for 0 min, 40 min, and 640 min, to Ag foil electroplated with 2.7 µm and 6.8 µm thick Sn as an interlayer. On the basis of characterization of the microstructure of the resulting joints, suitable thicknesses are suggested for the Ag base metal and the Sn interlayer for Ag/Sn/Ag transient liquid-phase (TLP) joints used for power die attachment. The diffusivities of Ag and Sn in the ξAg phase were also obtained. In combination with the kinetic constants of Ag3Sn growth and diffusivities of Ag and Sn in Ag reported in the literature, the diffusivities of Ag and Sn in the ξAg phase were also used to simulate and predict diffusion-controlled growth and evolution of the phases in Ag/Sn/Ag TLP joints during extended bonding and in service.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. L. Bernstein, J. Electrochem. Soc. 113, 1282 (1966).

    Article  Google Scholar 

  2. C.C. Lee and C.Y. Wang, Thin Solid Films 208, 202 (1992).

    Article  Google Scholar 

  3. G.S. Matijasevic, C.C. Lee, and C.Y. Wang, Thin Solid Films 223, 276 (1993).

    Article  Google Scholar 

  4. G. Humpston and D.M. Jacobson, Principles of Soldering (Materials Park: ASM International, 2004), pp. 230–235.

    Google Scholar 

  5. J.F. Li, P.A. Agyakwa, and C.M. Johnson, Acta Mater. 58, 3429 (2010).

    Article  Google Scholar 

  6. J.F. Li, P.A. Agyakwa, and C.M. Johnson, Acta Mater. 59, 1198 (2011).

    Article  Google Scholar 

  7. D.E. Crees, G. Humpston, D.M. Jacobson, and D. Newcombe, GEC J. Res. 6, 71 (1988).

    Google Scholar 

  8. T.B. Wang, Z.Z. Shen, R.Q. Ye, X.M. Xie, F. Stubhan, and J. Freytag, J. Electron. Mater. 29, 443 (2000).

    Article  Google Scholar 

  9. F. Bartels, J.W. Morris, G. Dalke, and W. Gust, J. Electron. Mater. 23, 787 (1994).

    Article  Google Scholar 

  10. E. Lugscheider, K. Bobzin, and M.K. Lake, Surf. Coat. Technol. 142–144, 813 (2001).

    Article  Google Scholar 

  11. N.S. Bosco and F.W. Zok, Acta Mater. 53, 2019 (2005).

    Article  Google Scholar 

  12. E. Lugscheider, K. Bobzin, M. Maes, S. Ferrara, and A. Erdle, Surf. Coat. Technol. 200, 444 (2005).

    Article  Google Scholar 

  13. S. Sommadossi, W. Gust, and E.J. Mittemeijer, Mater. Chem. Phys. 77, 924 (2002).

    Article  Google Scholar 

  14. P.K. Khanna, G. Dalke, and W. Gust, Z. Metallkd. 90, 722 (1999).

    Google Scholar 

  15. N. Quitoriano, W.S. Wong, L. Tsakalakos, Y. Cho, and T. Sands, J. Electron. Mater. 30, 1471 (2001).

    Article  Google Scholar 

  16. T. Studnitzky and R. Schmid-Fetzer, J. Electron. Mater. 32, 70 (2003).

    Article  Google Scholar 

  17. K. Guth, N. Oeschler, L. Bower, R. Speckels, G. Strotman, N. Heuck, S. Krasel, A. Ciliox, in Proceedings of 7th International Conference on Integrated Power Electronics Systems, 6–8 March 2012, Nuremberg, Germany, pp. 380–384.

  18. ‘‘Binary Ag–Sn phase diagram,’’ Facility for the Analysis of Chemical Thermodynamics (FACT). http://www.crct.polymtl.ca/FACT/phase_diagram.php?file=Ag--Sn.jpg&dir=SGTE.

  19. H.F. Hsu and S.W. Chen, Acta Mater. 52, 2541 (2004).

    Article  Google Scholar 

  20. G. Ghosh, J. Appl. Phys. 88, 6887 (2000).

    Article  Google Scholar 

  21. G. Ghosh, Acta Mater. 49, 2609 (2001).

    Article  Google Scholar 

  22. V. Tikare and J.D. Cawley, Acta Mater. 46, 1333 (1998).

    Article  Google Scholar 

  23. Z. Mei, A.J. Sunwoo, and J.W. Morris Jr, Metall. Trans. A23, 857 (1992).

    Article  Google Scholar 

  24. J.F. Li, P.A. Agyakwa, and C.M. Johnson, J. Mater. Sci. 45, 2340 (2010).

    Article  Google Scholar 

  25. J.F. Li, P.A. Agyakwa, and C.M. Johnson, Intermetallics 40, 50 (2013).

    Article  Google Scholar 

  26. H.W. King and T.B. Massalski, Philos. Mag. 6, 669 (1961).

    Article  Google Scholar 

  27. W. Klement Jr, Trans Metall Soc AIME 233, 1182 (1965).

    Google Scholar 

  28. R.H. Kane, B.C. Giessen, and N.J. Grant, Acta Metall. 14, 605 (1966).

    Article  Google Scholar 

  29. C.W. Fairhurst and J.B. Cohen, Acta Crystallogr. B28, 371 (1972).

    Article  Google Scholar 

  30. S. Barat and J.K. Mukherjee, Indian J. Technol. 13, 510 (1975).

    Google Scholar 

  31. Y. Ning and X. Zhou, J. Alloys Compd. 182, 131 (1992).

    Article  Google Scholar 

  32. E. Roennebro, J. Yin, A. Kitano, M. Wada, and T. Sakai, Solid State Ion. 176, 2749 (2005).

    Article  Google Scholar 

  33. T. Okabe, R.F. Hochman, and M.E. Mclain, J. Biomed. Res. 8, 381 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Electrical and Electronic Engineering, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK

    J. F. Li, P. A. Agyakwa & C. M. Johnson

Authors
  1. J. F. Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. P. A. Agyakwa
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. C. M. Johnson
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to J. F. Li.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Reprints and Permissions

About this article

Cite this article

Li, J.F., Agyakwa, P.A. & Johnson, C.M. Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient liquid-phase Joints Used for Power Die Attachment. J. Electron. Mater. 43, 983–995 (2014). https://doi.org/10.1007/s11664-013-2971-7

Download citation

  • Received: 22 February 2013

  • Accepted: 30 December 2013

  • Published: 22 January 2014

  • Issue Date: April 2014

  • DOI: https://doi.org/10.1007/s11664-013-2971-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • Transient liquid-phase (TLP) bonding
  • die attachment
  • diffusion
  • interfacial reaction
  • intermetallic compounds
  • solid solution
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.