Skip to main content
Log in

Grain Boundary Diffusion of Ni through Au-Doped Ni3Sn2 Intermetallic Compound for Technological Applications

  • Electronic Packaging and Interconnections 2021
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In recent years Au-Sn solid–liquid interdiffusion (SLID) has become a widely known bonding method to deliver promising die attaching techniques for high-temperature operating electronic vehicles. Insulated-gate bipolar transistor (IGBT) chips were assembled on direct bonded copper substrates by utilizing a Ni/Au-20Sn/Ni system based on SLID. Our previous research investigated the intermetallic compounds formed after isothermal aging. Electron microscopic instrumentation was employed to determine the interfacial reactions between AuSn and nickel (Ni). After total consumption of AuSn at the rim sites of (Ni, Au)3Sn2 grains, an increased concentration of Ni was identified. Prolongation of aging time at 240°C helped in precipitation of Ni3Sn at the interface of (Ni, Au)3Sn2 and Ni. This current research has theorized the mechanism of the intermetallic compounds formed at the rim sites of the Au-Sn System. From the results, the Au-Sn eutectic system attained in this article is ideal to assemble an IGBT for high-temperature devices using SLID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.K. Bose, Global warming: energy, environmental pollution, and the impact of power electronics IEEE Ind. Electron. Mag. 4, 6 (2010).

    Article  Google Scholar 

  2. B.K. Bose, Global energy scenario and impact of power electronics in 21st century IEEE Trans. Ind. Electron. 60, 2638 (2012).

    Article  Google Scholar 

  3. T. Kanata, K. Nishiwaki, and K. Hamada. Development trends of power semiconductors for hybrid vehicles. In The 2010 International Power Electronics Conference-ECCE ASIA-: IEEE (2010), p. 778–82

  4. S.W. Yoon, M.D. Glover, H.A. Mantooth, and K. Shiozaki, Reliable and repeatable bonding technology for high temperature automotive power modules for electrified vehicles Micromech. Microeng. 23, 015017 (2012).

    Article  Google Scholar 

  5. V.R. Manikam, and K.Y. Cheong, Die attach materials for high temperature applications: a review IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457 (2011).

    Article  CAS  Google Scholar 

  6. V. Smet, F. Forest, J.-J. Huselstein, F. Richardeau, Z. Khatir, S. Lefebvre et al., Ageing and failure modes of IGBT modules in high-temperature power cycling IEEE Trans. Ind. Electron. 58, 4931 (2011).

    Article  Google Scholar 

  7. R.W. Johnson, C. Wang, Y. Liu, and J.D. Scofield, Power device packaging technologies for extreme environments IEEE Trans. Electron. Packag. Manuf. 30, 182 (2007).

    Article  CAS  Google Scholar 

  8. T.A. Tollefsen, A. Larsson, O.M. Løvvik, and K. Aasmundtveit, Au-Sn SLID bonding—properties and possibilities Metall. Mater. Trans. B. 43, 397 (2012).

    Article  CAS  Google Scholar 

  9. T.A. Tollefsen, M.M.V. Taklo, K.E. Aasmundtveit, A. Larsson, Reliable HT electronic packaging—optimization of a Au-Sn slid joint. In 2012 4th Electronic System-Integration Technology Conference: IEEE (2012), p. 1–6

  10. A. Elasser, and T.P. Chow, Silicon carbide benefits and advantages for power electronics circuits and systems Proc. IEEE. 90, 969 (2002).

    Article  CAS  Google Scholar 

  11. M. Ciappa, Selected failure mechanisms of modern power modules Microelectron. Reliab. 42, 653 (2002).

    Article  Google Scholar 

  12. S. Annuar, R. Mahmoodian, M. Hamdi, and K.-N. Tu, Intermetallic compounds in 3D integrated circuits technology: a brief review Sci. Technol. Adv. Mater. 18, 693 (2017).

    Article  Google Scholar 

  13. T.A. Tollefsen, A. Larsson, O.M. Løvvik, and K.E. Aasmundtveit, High temperature interconnect and die attach technology: Au–Sn SLID bonding IEEE Trans. Compon. Packag. Manuf. Technol. 3, 904 (2013).

    Article  CAS  Google Scholar 

  14. S. Bader, W. Gust, and H. Hieber, Rapid formation of intermetallic compounds interdiffusion in the Cu-Sn and Ni-Sn systems Acta Metall. Mater. 43, 329 (1995).

    CAS  Google Scholar 

  15. W. Welc, J. Chae, S.H. Lee, N. Yazdi, K. Najafi, Transient liquid phase (TLP) bonding for microsystem packaging applications. In: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005 Digest of Technical Papers TRANSDUCERS'05: IEEE (2005), p. 1350–1353.

  16. M. Esashi, Wafer level packaging of MEMS J. Micromech. Microeng. 18, 073001 (2008).

    Article  Google Scholar 

  17. G.S. Matijasevic, C.C. Lee, and C.Y. Wang, Au-Sn alloy phase diagram and properties related to its use as a bonding medium Thin Solid Films 223, 276 (1993).

    Article  CAS  Google Scholar 

  18. C.C. Lee, C.Y. Wang, G. Matijasevic, Advances in bonding technology for electronic packaging. J. Electron. Packag. (1993)

  19. K. Wang, K. Aasmundtveit, H. Jakobsen, Surface evolution and bonding properties of electroplated Au/Sn/Au. In: 2008 2nd Electronics System-Integration Technology Conference: IEEE (2008), p. 1131

  20. F. Bartels, J. Morris, G. Dalke, and W. Gust, Intermetallic phase formation in thin solid-liquid diffusion couples J. Electron. Mater. 23, 787 (1994).

    Article  CAS  Google Scholar 

  21. N. Bosco, and F. Zok, Strength of joints produced by transient liquid phase bonding in the Cu–Sn system Acta Mater. 53, 2019 (2005).

    Article  CAS  Google Scholar 

  22. L. Bernstein, Semiconductor joining by the solid-liquid-interdiffusion (SLID) process: I. The systems Ag-In, Au-In, and Cu-In J. Electrochem. Soc. 113, 1282 (1966).

    Article  CAS  Google Scholar 

  23. J. Li, P. Agyakwa, and C. Johnson, Kinetics of Ag3Sn growth in Ag–Sn–Ag system during transient liquid phase soldering process Acta Mater. 58, 3429 (2010).

    Article  CAS  Google Scholar 

  24. T.A. Tollefsen, A. Larsson, M.M.V. Taklo, A. Neels, X. Maeder, K. Høydalsvik, D.W. Breiby, and K. Aasmundtveit, Au-Sn SLID bonding: a reliable HT interconnect and die attach technology Metall. Mater. Trans. B. 44, 406 (2013).

    Article  CAS  Google Scholar 

  25. Z. Zhu, C. Li, L. Liao, C. Liu, and C. Kao, Au–Sn bonding material for the assembly of power integrated circuit module J. Alloys Compd. 671, 340 (2016).

    Article  CAS  Google Scholar 

  26. X. Liu, M. Kinaka, Y. Takaku, I. Ohnuma, R. Kainuma, and K. Ishida, Experimental investigation and thermodynamic calculation of phase equilibria in the Sn-Au-Ni system J. Electron. Mater. 34, 670 (2005).

    Article  CAS  Google Scholar 

  27. H. Dong, V. Vuorinen, T. Laurila, and M. Paulasto-Kröckel, Thermodynamic reassessment of Au–Ni–Sn ternary system Calphad 43, 61 (2013).

    Article  CAS  Google Scholar 

  28. P. Othen, M. Jenkins, and G. Smith, High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe Philos. Mag. A. 70, 1 (1994).

    Article  CAS  Google Scholar 

  29. R. Monzen, M. Iguchi, and M. Jenkins, Structural changes of 9R copper precipitates in an aged Fe-Cu alloy Philos. Mag. Lett. 80, 137 (2000).

    Article  CAS  Google Scholar 

  30. H.Q. Dong, V. Vuorinen, T. Laurila, and M. Paulasto-Kröckel, Calphad 43, 61 (2013).

    Article  CAS  Google Scholar 

  31. X.J. Liu, M. Kinaka, Y. Takaku, I. Ohnuma, R. Kainuma, and K. Ishida, J. Electron. Mater. 34, 670 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Ministry of Science and Technology, Taiwan (MOST 104-2221-E-002-052-MY3) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Kao.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z.X., Renganathan, V. & Kao, C.R. Grain Boundary Diffusion of Ni through Au-Doped Ni3Sn2 Intermetallic Compound for Technological Applications. J. Electron. Mater. 50, 6590–6596 (2021). https://doi.org/10.1007/s11664-021-09282-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09282-z

Keywords

Navigation