Skip to main content
Log in

Effect of the Intensity of Single-Ruler Electromagnetic Braking on the Flow Pattern in a Thin-Slab Funnel Mold

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Electromagnetic braking (EMBr) is critical for suppressing the turbulence in the mold and developing a high-speed thin-slab continuous casting technology. The main problem is that the relationship between EMBr strength and flow patterns in a funnel mold is still inconclusive. Effects of magnetic induction intensity on the flow pattern and slag-metal behavior were numerically analyzed using the potential method. The variation of the electrical conductivity during solidification was considered to predict a physical-justified distribution of induced current. Results show that the induced current is mainly distributed in nozzle jets and solidified shells. Two induced e-current loops in opposite-rotated directions can be observed between the nozzle jet and solid shell, indicating that the shear stress caused by the induced e-current loops is a potential disadvantage for the thermal-mechanical behavior of the solidified shell. The flow pattern changes from classic double-roll flow to three-roll flow and then to single-roll flow with the increase of magnetic induction intensity. Backflows form near nozzle outlets at 0.17 T and occupy the entire slag-metal interface at 0.215 T. The core of the upward reverse flow from nozzle jets moves down, and the downward reverse flow gradually converges inward with EMBr intensity. Particular attention should be paid to the three-roll flow pattern. The flow field on the slag-metal interface will become unstable and asymmetrical, especially at 0.193 T. The plug-like flow is formed only when the magnetic induction is strong enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y.L. Kang, H. Yu, J. Fu, K. Wang, and Z.B. Wang: Mater. Sci. Eng. A, 2003, vol. 351, pp. 265–71. https://doi.org/10.1016/S0921-5093(02)00845-6.

    Article  CAS  Google Scholar 

  2. J.K. Park, B.G. Thomas, I.V. Samarasekera, and U.S. Yoon: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 425–36. https://doi.org/10.1007/s11663-002-0054-x.

    Article  CAS  Google Scholar 

  3. H.P. Liu, C.Z. Yang, H. Zhang, Q.J. Zhai, and Y. Gan: ISIJ Int., 2011, vol. 51, pp. 392–401. https://doi.org/10.2355/isijinternational.51.392.

    Article  CAS  Google Scholar 

  4. R.D. Morales, Y. Tang, G. Nitzl, C. Eglsaeer, and G. Hackl: ISIJ Int., 2012, vol. 52, pp. 1607–15. https://doi.org/10.2355/isijinternational.52.1607.

    Article  CAS  Google Scholar 

  5. Z. Liu, L. Li, and B. Li: JOM, 2016, vol. 68, pp. 2180–90. https://doi.org/10.1007/s11837-016-1988-9.

    Article  CAS  Google Scholar 

  6. Z.D. Qian and Y.L. Wu: ISIJ Int., 2004, vol. 44, pp. 100–07. https://doi.org/10.2355/isijinternational.44.100.

    Article  CAS  Google Scholar 

  7. R. Singh, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1201–21. https://doi.org/10.1007/s11663-013-9877-x.

    Article  CAS  Google Scholar 

  8. B.G. Thomas, R. Singh, S.P. Vanka, K. Timmel, S. Eckert, and G. Gerbeth: J. Manuf. Sci. Prod., 2015, vol. 15, p. 93. https://doi.org/10.1515/jmsp-2014-0047.

    Article  CAS  Google Scholar 

  9. R. Chaudhary, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 532–53. https://doi.org/10.1007/s11663-012-9634-6.

    Article  CAS  Google Scholar 

  10. D. Schurmann, I. Glavinic, B. Willers, K. Timmel, and S. Eckert: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 61–78. https://doi.org/10.1007/s11663-019-01721-x.

    Article  CAS  Google Scholar 

  11. A. Vakhrushev, A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig, G. Nitzl, Y. Tang, G. Hackl, J. Watzinger, and S. Eckert: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3193–3207. https://doi.org/10.1007/s11663-021-02247-x.

    Article  CAS  Google Scholar 

  12. L.S. Zhang, X.F. Zhang, B. Wang, Q. Liu, and Z.G. Hu: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 295–306. https://doi.org/10.1007/s11663-013-9948-z.

    Article  CAS  Google Scholar 

  13. H.P. Liu, J.J. Zhang, H.B. Tao, and H. Zhang: Metall. Res. Technol., 2020, vol. 117, p. 602. https://doi.org/10.1051/metal/2020044.

    Article  CAS  Google Scholar 

  14. L. Xu, E.G. Wang, C. Karcher, A.Y. Deng, and X.J. Xu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2779–93. https://doi.org/10.1007/s11663-018-1342-4.

    Article  CAS  Google Scholar 

  15. F. Li, E.G. Wang, M.J. Feng, and Z. Li: ISIJ Int., 2015, vol. 55, pp. 814–20. https://doi.org/10.2355/isijinternational.55.814.

    Article  CAS  Google Scholar 

  16. A.Y. Deng, L. Xu, E.G. Wang, and J.C. He: J. Iron. Steel Res. Int., 2014, vol. 21, pp. 809–16. https://doi.org/10.1016/s1006-706x(14)60146-1.

    Article  Google Scholar 

  17. L. Xu, E. Wang, C. Karcher, A. Deng, X. Xu, and Z. Han: Int. J. Appl. Electromagn. Mech., 2020, vol. 63, pp. S85-92. https://doi.org/10.3233/jae-209106.

    Article  Google Scholar 

  18. L. Xu, C. Karcher, and E. Wang: Metall. Mater. Trans. B, 2023, https://doi.org/10.1007/s11663-023-02784-7.

    Article  Google Scholar 

  19. F. Nicoud and F. Ducros: Flow Turbul. Combust., 1999, vol. 62, pp. 183–200. https://doi.org/10.1023/A:1009995426001.

    Article  CAS  Google Scholar 

  20. K. Cukierski and B.G. Thomas: Metall. Mater. Trans. B, 2008, vol. 39, pp. 94–107. https://doi.org/10.1007/s11663-007-9109-3.

    Article  CAS  Google Scholar 

  21. A. Vakhrushev, A. Kharicha, M.H. Wu, A. Ludwig, G. Nitzl, Y. Tang, G. Hackl, J. Watzinger, and C.M.G. Rodrigues: IOP Conf. Ser., 2020, vol. 861, p. 012015. https://doi.org/10.1088/1757-899x/861/1/012015.

    Article  CAS  Google Scholar 

  22. A. Vakhrushev, M.H. Wu, A. Ludwig, Y. Tang, G. Hackl, and G. Nitzl: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1024–37. https://doi.org/10.1007/s11663-014-0030-2.

    Article  CAS  Google Scholar 

  23. M.C. Schneider, J.P. Gu, C. Beckermann, W.J. Boettinger, and U.R. Kattner: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1517–31. https://doi.org/10.1007/s11661-997-0214-3.

    Article  Google Scholar 

  24. Y.F. Wang and L.F. Zhang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1319–51. https://doi.org/10.1007/s11663-011-9554-x.

    Article  CAS  Google Scholar 

  25. X.Y. Tian, B.W. Li, and J.C. He: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 596–604. https://doi.org/10.1007/s11663-009-9246-y.

    Article  CAS  Google Scholar 

  26. X.Y. Tian, F. Zou, B.W. Li, and J.C. He: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 112–20. https://doi.org/10.1007/s11663-009-9314-3.

    Article  CAS  Google Scholar 

  27. C.J. Wang, Z.Q. Liu, and B.K. Li: Metals, 2021, vol. 11, p. 948. https://doi.org/10.3390/met11060948.

    Article  CAS  Google Scholar 

  28. B. Petrus, K. Zheng, X. Zhou, B.G. Thomas, and J. Bentsman: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 87–103. https://doi.org/10.1007/s11663-010-9452-7.

    Article  CAS  Google Scholar 

  29. R. Moreau: Magnetohydrodynamics, Kluwer Academic Publishers, Norwell, MA, 1990.

    Book  Google Scholar 

  30. J.E. Camporredondo, A.H. Castillejos, F.A. Acosta, E.P. Gutiérrez, and M.A. Herrera: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 541–60. https://doi.org/10.1007/s11663-004-0054-0.

    Article  Google Scholar 

  31. Z.Q. Liu, A. Vakhrushev, M.H. Wu, E. Karimi-Sibaki, A. Kharicha, A. Ludwig, and B.K. Li: Metals, 2018, vol. 8, p. 609. https://doi.org/10.3390/met8080609.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51974071); the Excellent Youth Fund of Liaoning Natural Science Foundation (No. 2023JH3/10200001); and the Fundamental Research Funds for the Central Universities (No. N2225011).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongqiu Liu or Baokuan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Liu, Z. & Li, B. Effect of the Intensity of Single-Ruler Electromagnetic Braking on the Flow Pattern in a Thin-Slab Funnel Mold. Metall Mater Trans B 54, 3438–3450 (2023). https://doi.org/10.1007/s11663-023-02923-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02923-0

Navigation