Skip to main content
Log in

Real-Time, Model-Based Spray-Cooling Control System for Steel Continuous Casting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This article presents a new system to control secondary cooling water sprays in continuous casting of thin steel slabs (CONONLINE). It uses real-time numerical simulation of heat transfer and solidification within the strand as a software sensor in place of unreliable temperature measurements. The one-dimensional finite-difference model, CON1D, is adapted to create the real-time predictor of the slab temperature and solidification state. During operation, the model is updated with data collected by the caster automation systems. A decentralized controller configuration based on a bank of proportional-integral controllers with antiwindup is developed to maintain the shell surface-temperature profile at a desired set point. A new method of set-point generation is proposed to account for measured mold heat flux variations. A user-friendly monitor visualizes the results and accepts set-point changes from the caster operator. Example simulations demonstrate how a significantly better shell surface-temperature control is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

0 :

superscript to indicate initial time of creation (at meniscus)

Cp *steel :

effective specific heat of steel, including latent heat of solidification (J/kg K)

Δt :

time interval for control calculation (s)

Δt FD , Δx :

time step (s) and grid spacing (m) used in CON1D explicit finite difference scheme

ΔT j :

difference between estimated average surface temperature and set point in zone j (°C)

f roll :

fraction of heat removed through roll contact in zone

i :

subscript for CON1D slice number, used in CONSENSOR (N total)

j :

subscript for spray zone number (N zone total)

k P j k I j k aw j :

proportional, integral, and antiwindup controller gains

k steel :

thermal conductivity of steel (W/m K)

L j :

total length of zone j (m)

L roll contact,j :

length of zone j in which rolls are in contact with the steel surface (m)

Lspray,j , w j :

length and width of the area of the steel surface upon which all the sprays in zone j impinge (m)

n pattern :

index denoting desired spray pattern

p E :

weight percent of alloying element E

q :

surface heat flux at a particular time and location (MW/m2)

\( \bar{q}_{\text{mold}} \) :

average steel surface heat flux in mold (MW/m2)

Q sw,j :

spray water flux (L/s/m2) on surface of steel in zone j

ρ steel :

density of steel (kg/m3)

t :

real time (s)

t i (z):

time when slice i passes distance z from the meniscus (s)

T i (x,t):

temperature of CON1D slice i: 1-D transverse cross section moving along strand centerline at V c (°C)

Ts(z,t):

strand surface-temperature set point (°C)

\( \hat{T}\left( {z,t} \right) \) :

strand surface-temperature estimate (°C)

T amb :

ambient temperature (°C)

T pour :

measured temperature of molten steel in the tundish (°C)

T spray :

measured temperature of spray water (°C)

u j ′(t), u j (t):

spray water flow rate: measured, requested controller output (L/s)

u P j (t), u I J (t):

proportional and integral portions of requested spray water flow rate (L/s)

V c :

casting speed (m/s)

x :

distance through thickness of strand (m)

z :

distance from meniscus, in casting direction (m)

z i (t):

distance from meniscus of slice i at time t (m)

z m :

mold length (m)

References

  1. J.K. Brimacombe, P.K. Agarwal, S. Hibbins, B. Prabhaker, and L.A. Baptista: in Continuous Casting, J.K. Brimacombe, ed., 1984, vol. 2, pp. 105–23.

  2. M.M. Wolf: Continuous Casting: Initial Solidification and Strand Surface Quality of Peritectic Steels, Iron and Steel Society, Warrendale, PA, 1997, vol. 9, pp. 1–111.

  3. K. Okuno, H. Naruwa, T. Kuribayashi, and T. Takamoto: Iron Steel Eng., 1987, vol. 12, no. 4, pp. 34-38.

    Google Scholar 

  4. K.-H. Spitzer, K. Harste, B. Weber, P. Monheim, and K. Schwerdtfeger: ISIJ Int., 1992, vol. 32, no. 7, pp. 848-56.

    Article  CAS  Google Scholar 

  5. S. Barozzi, P. Fontana, and P. Pragliola: Iron Steel Eng., 1986, vol. 11, pp. 21-26.

    Google Scholar 

  6. B. Lally, L. Biegler, and H. Henein: Metall. Trans. B, 1990, vol. 21B, pp. 761-70.

    Article  CAS  Google Scholar 

  7. K. Dittenberger, K. Morwald, G. Hohenbichler, and U. Feischl:, Proc. VAI 7th International Continuous Casting Conference, Linz, Austria, 1996, pp. 44.1-6.

    Google Scholar 

  8. R.A. Hardin, K. Liu, A. Kapoor, and C. Beckermann: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 297-306.

    Article  CAS  Google Scholar 

  9. S. Louhenkilpi, E. Laitinen, and R. Nienminen: Metall. Mater. Trans. B, 1999, vol. 24B, pp. 685-93.

    Google Scholar 

  10. S. Louhenkilpi, J. Laine, T. Raisanen, and T. Hatonen: 2nd Int. Conf. on New Developments in Metallurgical Process Technology, Riva del Garda, Italy, 2004.

    Google Scholar 

  11. T. Raisanen, S. Louhenkilpi, T. Hatonen, J. Toivanen, J. Laine, and M. Kekalainen: European Congress on Computational Methods in Applied Sciences and Engineering, 2004.

  12. M. Jauhola, E. Kivela, J. Konttinen, E. Laitinen, and S. Louhenkilpi: Proc. 6th International Rolling Conference, vol. 1, Dusseldorf, Germany, 1994, pp. 196-200.

    Google Scholar 

  13. K. Zheng, B. Petrus, B.G. Thomas, and J. Bentsman: AISTech 2007, Steelmaking Conf. Proc., Indianapolis, IN, 2007.

    Google Scholar 

  14. B.G. Thomas, J. Bentsman, B. Petrus, H. Li, A.H. Castillejos, and F.A. Acosta: Proc. 2009 NSF CMMI Engineering Research and Innovation Conference, Honolulu, HI, 2009, p. 16.

    Google Scholar 

  15. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685-705.

    Article  CAS  Google Scholar 

  16. C. Edwards and I. Postlethwaitex: Proc. UKACC International Conference on CONTROL, 1996, pp. 394–99.

  17. B. Santillana, L.C. Hibbeler, B.G. Thomas, A. Hamoen, A. Kamperman, and W. van der Knoop: ISIJ Int., 2008, vol. 48, no. 10, pp. 1380-88.

    Article  CAS  Google Scholar 

  18. J. Sengupta, M.-K. Trinh, D. Currey, and B.G. Thomas: Proc. AISTech 2009 Steelmaking Conf. Proc., St. Louis, MO, 2009.

    Google Scholar 

  19. Y.M. Won and B.G. Thomas: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 179, 1755–67.

  20. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 707-25.

    Article  CAS  Google Scholar 

  21. J.-K. Park, B.G. Thomas, I.V. Samarasekera, and U.-S. Yoon: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 425-36.

    Article  CAS  Google Scholar 

  22. T. Nozaki: Trans. ISIJ, 1978, vol. 18, pp. 330-38.

    CAS  Google Scholar 

  23. R.A. Hardin, H. Shen, and C. Beckermann: Proc. Modelling of Casting, Welding and Advanced Solidification Processes IX, Aachen, Germany, 2000, pp. 190, 729–36.

  24. E. Mizikar: Iron Steel Eng., 1970, vol. 47, pp. 53-60.

    Google Scholar 

  25. L.K. Chiang: Proc. 57th Electric Furnace Conf., Pittsburgh, PA, 1999.

    Google Scholar 

  26. Tanner: Proc. MS&T Conf. Proc., Ed. B.G. Thomas, New Orleans, LA, 2004.

    Google Scholar 

  27. K. Kasperski: Proc. MS&T Conf. Proc., Ed. B.G. Thomas, New Orleans, LA, 2004.

    Google Scholar 

  28. S.-M. Lee and S.-Y. Jang: ISIJ Int., 1996, vol. 36, pp. 208-10.

    Article  Google Scholar 

  29. S. Vapalahti, H. Castillejos, A. Acosta, A.C. Hernández, and B.G. Thomas: “Delavan Nozzle Characterization Research at CINVESTAV,” CCC Report, #CCC0703, University of Illinois, June 12, 2007.

  30. S. Vapalahti, H. Castillejos, A. Acosta, A.C. Hernández, and B.G. Thomas: “Spray Heat Transfer Research at CINVESTAV,” CCC Report, #CCC0704, University of Illinois, June 12, 2007.

  31. S. Vapalahti, B.G. Thomas, S. Louhenkilpi, A.H. Castillejos, F.A. Acosta, and C.A. Hernandez: Proc. STEELSIM 2007, Graz, Austria, 2007.

    Google Scholar 

  32. Trico Steel LLC: Spray Nozzle Arrangement, Cleveland, OH, 1995,

    Google Scholar 

  33. C. Brosilow and B. Joseph: Techniques of Model-Based Control, Prentice Hall, Upper Saddle River, NJ, 2002.

    Google Scholar 

  34. Y.V. Orlov and M.V. Basin: IEEE Trans. Automat Contr, 1995, vol. 40 (9), pp. 1623–26.

  35. C. Cicutti, M. Valdez, T. Perez, G.D. Gresia, W. Balante, and J. Petroni: Proc. 85th Steelmaking Conf., Nashville, TN, 2002, vol. 85, pp. 97–107, 282.

Download references

Acknowledgments

Ron O’Malley, Matthew Smith, Terri Morris, and Kris Sledge from Nucor Decatur are gratefully acknowledged for their unwavering support and help with this work. The TCP/IP programs in CONONLINE were written by Rob Oldroyd from DBR Systems on behalf of Nucor Decatur. We are grateful for work on CON1D calibration for the Nucor Decatur steel mill by Sami Vahpalahti and Huan Li from the University of Illinois. We are also very grateful for their work on CONONLINE. This work is supported by the National Science Foundation under Grants DMI 05-00453 and CMMI-0900138 as well as the Continuous Casting Consortium at UIUC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Thomas.

Additional information

Manuscript submitted July 14, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrus, B., Zheng, K., Zhou, X. et al. Real-Time, Model-Based Spray-Cooling Control System for Steel Continuous Casting. Metall Mater Trans B 42, 87–103 (2011). https://doi.org/10.1007/s11663-010-9452-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9452-7

Keywords

Navigation