Skip to main content
Log in

Melt flow, heat transfer and solidification in a flexible thin slab continuous casting mold with vertical-combined electromagnetic braking

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

During continuous casting of steel slabs, the application of electromagnetic braking technology (EMBr) provides an effective tool to influence solidification by controlling the pattern of melt flow in the mold. Thus, the quality of the final product can be improved considerably. A new electromagnetic braking (EMBr) method, named vertical-combined electromagnetic braking (VC-EMBr), is proposed to be applied to a flexible thin slab casting (FTSC) mold. To evaluate the beneficial effects of the VC-EMBr, the melt flow, heat transfer, and solidification processes in the FTSC mold are studied by means of numerical simulations. In detail, a Reynolds-averaged Navier–Stokes turbulence model together with an enthalpy-porosity approach was used. The numerical findings are compared with respective simulations using the traditional Ruler-EMBr. The results demonstrate that the application of the VC-EMBr contributes significantly to preventing relative slab defects. In contrast to the Ruler-EMBr, the additional vertical magnetic poles of the VC-EMBr preferentially suppress the direct impact of jet flow on the narrow face of FSTC mold and considerably diminish the level fluctuation near the meniscus region. For instance, by applying a magnetic flux density of 0.3 T, the maximum amplitude of meniscus deflection reduces by about 80%. Moreover, the braking effect of the VC-EMBr effectively improves the homogeneity of temperature distribution in the upper recirculation region and increases the solidified shell thickness along the casting direction. On this basis, the newly proposed VC-EMBr shows a beneficial effect in preventing relative slab defects for FTSC thin slab continuous casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L. Zhang, X. Zhang, B. Wang, Q. Liu, Z. Hu, Metall. Mater. Trans. B 45 (2014) 295–306.

    Article  CAS  Google Scholar 

  2. L. Xu, Q. Pei, Z. Han, S. Yang, J. Wang, Y. Yao, Processes 10 (2022) 2738–2757.

    Article  CAS  Google Scholar 

  3. A. Vakhrushev, M. Wu, A. Ludwig, Y. Tang, G. Hackl, G. Nitzl, Metall. Mater. Trans. B 45 (2014) 1024–1037.

    Article  CAS  Google Scholar 

  4. M. Thunman, S. Eckert, O. Hennig, J. Björkvall, S. Du, Steel Res. Int. 78 (2007) 849–856.

    Article  CAS  Google Scholar 

  5. D.S. Kim, W.S. Kim, K.H. Cho, ISIJ Int. 40 (2000) 670–676.

    Article  CAS  Google Scholar 

  6. Y.S. Hwang, P.R. Cha, H.S. Nam, K.H. Moon, J.K. Yoon, ISIJ Int. 37 (1997) 659–667.

    Article  CAS  Google Scholar 

  7. J.K. Park, I.V. Samarasekera, B.G. Thomas, U.S. Yoon, Metall. Mater. Trans. B 33 (2002) 437–449.

    Article  Google Scholar 

  8. E. Torres-Alonso, R.D. Morales, L.G. Demedices, A. Nájera, J. Palafox-Ramos, P. Ramirez-Lopez, ISIJ Int. 47 (2007) 679–688.

    Article  CAS  Google Scholar 

  9. T. Honeyands, J. Herbertson, Steel Res. Int. 66 (1995) 287–293.

    Article  CAS  Google Scholar 

  10. H. Liu, J. Zhang, H. Tao, H. Zhang, Metall. Res. Technol. 117 (2020) 602–617.

    Article  Google Scholar 

  11. H. Liu, C. Yang, H. Zhang, Q. Zhai, Y. Gan, ISIJ Int. 51 (2011) 392–401.

    Article  CAS  Google Scholar 

  12. D. Schurmann, I. Glavinić, B. Willers, K. Timmel, S. Eckert, Metall. Mater. Trans. B 51 (2020) 61–78.

    Article  CAS  Google Scholar 

  13. B. Li, T. Okane, T. Umeda, Metall. Mater. Trans. B 31 (2000) 1491–1503.

    Article  Google Scholar 

  14. Y. Wang, L. Zhang, Metall. Mater. Trans. B 42 (2011) 1319–1351.

    Article  CAS  Google Scholar 

  15. Z. Qian, Y. Wu, ISIJ Int. 44 (2004) 100–107.

    Article  CAS  Google Scholar 

  16. L. Xu, Q. Pei, Z. Han, J. Cui, H. Pan, Y. Yao, Processes 11 (2022) 33–49.

    Article  Google Scholar 

  17. A. Idogawa, M. Sugizawa, S. Takeuchi, K. Sorimachi, T. Fujii, Mater. Sci. Eng. A 173 (1993) 293–297.

    Article  Google Scholar 

  18. K. Jin, S.P. Vanka, B.G. Thomas, Metall. Mater. Trans. B 48 (2017) 162–178.

    Article  CAS  Google Scholar 

  19. H. Yu, M. Zhu, ISIJ Int. 48 (2008) 584–591.

    Article  CAS  Google Scholar 

  20. S. Sarkar, V. Singh, S.K. Ajmani, R. Ranjan, K. Rajasekar, ISIJ Int. 56 (2016) 2181–2190.

    Article  CAS  Google Scholar 

  21. L. Xu, E. Wang, C. Karcher, A. Deng, X. Xu, Metall. Mater. Trans. B 49 (2018) 2779–2793.

    Article  CAS  Google Scholar 

  22. B.G. Thomas, R. Singh, S.P. Vanka, K. Timmel, S. Eckert, G. Gerbeth, J. Manuf. Sci. Prod. 15 (2015) 93–104.

    CAS  Google Scholar 

  23. R. Singh, B.G. Thomas, S.P. Vanka, Metall. Mater. Trans. B 44 (2013) 1201–1221.

    Article  CAS  Google Scholar 

  24. R. Chaudhary, B.G. Thomas, S.P. Vanka, Metall. Mater. Trans. B 43 (2012) 532–553.

    Article  CAS  Google Scholar 

  25. Y. Yin, J. Zhang, ISIJ Int. 61 (2021) 853–864.

    Article  CAS  Google Scholar 

  26. S. Sarkar, V. Singh, S.K. Ajmani, R.K. Singh, E.Z. Chacko, ISIJ Int. 58 (2018) 68–77.

    Article  CAS  Google Scholar 

  27. R. Singh, B.G. Thomas, S.P. Vanka, Metall. Mater. Trans. B 45 (2014) 1098–1115.

    Article  CAS  Google Scholar 

  28. S.M. Cho, B.G. Thomas, S.H. Kim, Metall. Mater. Trans. B 47 (2016) 3080–3098.

    Article  CAS  Google Scholar 

  29. E. Wang, Z. Li, L. Xu, F. Li, A. Deng, X. Zhang, L. Zhang, Vertical electromagnetic braking device for controlling flow of molten steel in continuous casting crystallizer, European Patent, EP 3441158B1, 2020.

  30. B.G. Thomas, Steel Res. Int. 89 (2018) 312–332.

    Article  Google Scholar 

  31. Z. Liu, B. Li, Powder Technol. 287 (2016) 315–329.

    Article  CAS  Google Scholar 

  32. H. Yang, X. Zhang, K. Deng, W. Li, Y. Gan, L. Zhao, Metall. Mater. Trans. B 29 (1998) 1345–1356.

    Article  Google Scholar 

  33. V.C. Patel, W. Rodi, G. Scheuerer, AIAA J. 23 (1985) 1308–1319.

    Article  ADS  MathSciNet  Google Scholar 

  34. R.A.W.M. Henkes, C.J. Hoogendoorn, Int. J. Heat Mass Transfer 32 (1989) 157–169.

    Article  ADS  CAS  Google Scholar 

  35. M.R. Aboutalebi, M. Hasan, R.I.L. Guthrie, Metall. Mater. Trans. B 26 (1995) 731–744.

    Article  Google Scholar 

  36. S. Garcia-Hernandez, R.D. Morales, E. Torres-Alonso, Ironmak. Steelmak. 37 (2010) 360–368.

    Article  CAS  Google Scholar 

  37. Z. Liu, L. Li, B. Li, M. Jiang, JOM 66 (2014) 1184–1196.

    Article  CAS  Google Scholar 

  38. H.S. Park, H. Nam, J.K. Yoon, ISIJ Int. 41 (2001) 974–980.

    Article  CAS  Google Scholar 

  39. Z. Li, E. Wang, L. Zhang, Y. Xu, A. Deng, Metall. Mater. Trans. B 48 (2017) 2389–2402.

    Article  CAS  Google Scholar 

  40. X. Sun, B. Li, H. Lu, Y. Zhong, Z. Ren, Z. Lei, Metals 9 (2019) 983–999.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant Nos. U1760206 and 51574083) and the 111 Project (2.0) of China (No. BP0719037) for the financial support. The first author is grateful for financial support provided by the Institute of Thermodynamics and Fluid Mechanics at Technische Universität Ilmenau, Germany, and the Verein zur Förderung der Thermo-und Fluiddynamik e.V. Furthermore, the authors are grateful to Deutsche Forschungsgemeinschaft (DFG) for the financial support in the framework of the Research Training Group Lorentz Force Velocimetry and Lorentz Force Eddy Current Testing (GRK 1567). Finally, the authors acknowledge support by the Computer Center at TU Ilmenau for providing the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to En-gang Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Han, Zf., Karcher, C. et al. Melt flow, heat transfer and solidification in a flexible thin slab continuous casting mold with vertical-combined electromagnetic braking. J. Iron Steel Res. Int. 31, 401–415 (2024). https://doi.org/10.1007/s42243-023-01062-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01062-9

Keywords

Navigation