Skip to main content
Log in

Numerical Simulation and Experimental Study of Molten Steel Permanent Magnet Stirring Under Different Rotation Speeds and Magnetic Flux Densities

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Compared with electromagnetic stirring, a novel permanent magnet stirring, characterized by high magnetic flux density and low energy consumption, is an effective alternative to produce steel with uniform solidification microstructure. In this study, a mathematical model of PMS is developed based on the multi-physics field analysis software COMSOL and the flow field software FLUENT, and the electromagnetic force and the molten steel flow are calculated under various rotation speeds (50, 150, 300 rpm) and magnetic flux densities (850, 1450, 1800 Gs). The calculated results are consistent with the measured magnetic flux densities. It is found that when the rotation speed enhances from 50 to 300 rpm, the maximum electromagnetic force increases clearly from 1.90 to 11.24 kN/m3, the maximum tangential velocity varies from 0.09 to 0.47 m/s. Moreover, the maximum electromagnetic force increases from 2.06 to 8.45 kN/m3 and the maximum tangential velocity varies from 0.11 to 0.38 m/s in a diameter of 50 mm molten steel ingot when the magnetic flux density increases from 850 to 1800 Gs. In addition, the experimental results reveal that the PMS with the rotation speed of 150 rpm and the magnetic flux density of 1450 to 1800 Gs can effectively decrease the size and achieve a uniform distribution of MnS in the solidified 49MnVS3 steel ingot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.Y. Park and W.J. Kim: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3523–39.

    Article  Google Scholar 

  2. L. Wang, R. Qi, B. Ye, Y. Bai, R. Huang, H. Jiang, and W. Ding: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 1972–77.

    Article  Google Scholar 

  3. J. Zou, H. Zhang, X. Qiao, Z. Wu, L. Wang, Y. Li, H. Nagaumi, B. Li, and J. Cui: J. Mater. Res. Technol., 2021, vol. 15, pp. 5894–5905.

    Article  CAS  Google Scholar 

  4. A. Bojarevičs, T. Beinerts, M. Sarma, and Y. Gelfgat: J. Manuf. Sci. Prod., 2015, vol. 15, pp. 35–39.

    Google Scholar 

  5. J. Zeng, W. Chen, S. Zhang, L.I. Yi, and Q. Wang: ISIJ Int., 2015, vol. 55, pp. 2142–49.

    Article  CAS  Google Scholar 

  6. W. Wang, J. Peng, J. Zeng, C. Zhu, Y. Yang, and A. McLean: Philos. Mag., 2021, vol. 101, pp. 2273–94.

    Article  CAS  Google Scholar 

  7. J. Zeng, W. Chen, W. Yan, Y. Yang, and A. McLean: Mater. Des., 2016, vol. 108, pp. 364–73.

    Article  CAS  Google Scholar 

  8. W. Yan, W. Chen, S. Zhang, B. Li, and J. Li: Mater. Charact., 2019, vol. 157, p. 109894.

    Article  CAS  Google Scholar 

  9. H. Wei, F. Xia, S. Qian, and M. Wang: J. Mater. Process. Technol., 2017, vol. 240, pp. 344–53.

    Article  CAS  Google Scholar 

  10. J. Zeng, W. Chen, Y. Yang, and A. Mclean: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 3083–3100.

    Article  Google Scholar 

  11. A. Kawami, Y. Maruta, S. Kameko, T. Adachi, and M. Nakatani: Trans. ISIJ, 1982, vol. 22, p. B46, in presented at the 102nd ISIJ Meeting, 1981, Lecture No. S835.

  12. T. Hagiwara, M. Taki, K. Kimura, M. Takeuchi, and M. Nakatani: Trans. ISIJ, 1982, vol. 22, p. B47, in presented at the 102nd ISIJ Meeting, 1981, Lecture No. S836.

  13. Q. Fang, H. Zhang, J. Wang, C. Liu, and H. Ni: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1705–17.

    Article  Google Scholar 

  14. S.W. Han, H.J. Cho, S.Y. Jin, M. Sedén, I.B. Lee, and I. Sohn: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2757–69.

    Article  Google Scholar 

  15. Z. Zhang, M. Wu, H. Zhang, S. Hahn, F. Wimmer, A. Ludwig, and A. Kharicha: J. Mater. Process. Technol., 2022, vol. 301, p. 117434.

    Article  CAS  Google Scholar 

  16. J. Zou, H. Zhang, Z. Wu, J. Wang, B. Li, J. Cui, H. Nagaumi, and Y. Li: J. Mater. Res. Technol., 2021, vol. 14, pp. 1585–1600.

    Article  CAS  Google Scholar 

  17. M.J. Balart, C.L. Davis, and M. Strangwood: Mater. Sci. Eng. A, 2000, vol. 284, pp. 1–13.

    Article  Google Scholar 

  18. G. Poulachon, M. Dessoly, J.L. Lebrun, C. Le Calvez, V. Prunet, and I.S. Jawahir: Wear, 2002, vol. 253, pp. 339–56.

    Article  CAS  Google Scholar 

  19. A. Ghosh, P. Modak, R. Dutta, and D. Chakrabarti: Mater. Sci. Eng. A, 2016, vol. 654, pp. 298–308.

    Article  CAS  Google Scholar 

  20. X. Shao, X. Wang, M. Jiang, W. Wang, and F. Huang: ISIJ Int., 2011, vol. 51, pp. 1995–2001.

    Article  CAS  Google Scholar 

  21. J. Peng, W. Wang, W. Zhou, and J. Zeng: Steel Res. Int., 2022, vol. 2200635, pp. 1–8.

    Google Scholar 

  22. J.S. Navtej Saluja and O.J. lIegbusi: Process Metall., 1990, vol. 61, pp. 455–66.

    Google Scholar 

  23. S. Zhou, C. Bai, Y. Lei, Z. Ren, P. Cao, and Z. Yang: J. Cent. South Univ. Technol., 2010, vol. 4, pp. 1139–43.

    Google Scholar 

  24. D. Jiang and M. Zhu: Steel Res. Int., 2015, vol. 86, pp. 993–1003.

    Article  CAS  Google Scholar 

  25. Y. Wang, L. Zhang, W. Chen, and Y. Ren: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2796–2805.

    Article  Google Scholar 

  26. W. Wang, S. Luo, and M. Zhu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1339–54.

    Article  Google Scholar 

  27. C. Vives: Metall. Trans. B, 1992, vol. 23, pp. 189–206.

    Article  Google Scholar 

  28. B. Willers, S. Eckert, U. Michel, I. Haase, and G. Zouhar: Mater. Sci. Eng. A, 2005, vol. 402, pp. 55–65.

    Article  Google Scholar 

  29. J. Peng, W. Wang, D. Huang, and J. Zeng: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 2471–80.

    Article  Google Scholar 

  30. B. Wang, X. Wang, J. Etay, X. Na, X. Zhang, and Y. Fautrelle: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1369–77.

    Article  Google Scholar 

  31. M. Rivero, S. Cuevas, and E. Ramos: Exp. Therm. Fluid Sci., 2016, vol. 78, pp. 30–40.

    Article  CAS  Google Scholar 

  32. B. Wang, X. Wang, Y. Fautrelle, and J. Etay: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3476–88.

    Article  Google Scholar 

  33. J. Zeng, W.Q. Chen, Y.D. Yang, and A. McLean: Ironmak. Steelmak., 2018, vol. 45, pp. 576–83.

    Article  CAS  Google Scholar 

  34. D. Zhang, H. Yang, and Q. Zhang: Materials, 2022, https://doi.org/10.3390/ma15155237.

    Article  Google Scholar 

  35. A.A. El-Daly and A.A. Ibrahiem: J. Alloys Compd., 2018, vol. 740, pp. 801–09.

    Article  CAS  Google Scholar 

  36. X. Wang, S. Wang, L. Zhang, S. Sridhar, A. Conejo, and X. Liu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5496–5509.

    Article  Google Scholar 

  37. B. Mao, G. Zhang, and A. Li: Theory and Technology of Electromagnetic Stirring for Continuous Casting. Metallurgical Industry Press, Beijing, 2012, p. 169.

  38. J. Mulcahy and L. Beitelman: Iron Steel Eng., 1984, vol. 61, pp. 49–57.

    Google Scholar 

  39. X.D. Wang, T.J. Li, Y. Fautrelle, M.D. Dupouy, and J.Z. Jin: J. Cryst. Growth, 2005, vol. 275, pp. 1473–79.

    Article  Google Scholar 

  40. D. Jia, L. Zhong, J. Yu, Z. Liu, L. Yuan, C. Tian, and W. Dai: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3756–66.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support for this work from the National Natural Science Foundation of China (51904345, 52274342), the Opening Foundation of the State Key Laboratory of Metal Material for Marine Equipment and Application (SKLMEA-K202201), the Key Project of Guangxi Zhuang Autonomous Region (2021AB17090), and the Government of Chongzuo, Guangxi Zhuang Autonomous Region (Grant Nos. FA2020007 and FA20210716) are gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest in this paper. All the authors listed have approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Liu, L., Wang, W. et al. Numerical Simulation and Experimental Study of Molten Steel Permanent Magnet Stirring Under Different Rotation Speeds and Magnetic Flux Densities. Metall Mater Trans B 54, 1532–1545 (2023). https://doi.org/10.1007/s11663-023-02779-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02779-4

Navigation