Skip to main content
Log in

Enhanced Hot Workability and Post-Hot Deformation Microstructure of the As-Cast Al-Zn-Cu-Mg Alloy Fabricated by Use of a High-Frequency Electromagnetic Casting with Electromagnetic Stirring

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The feasibility of producing an Al-Zn-Cu-Mg (7075) aluminum (Al) alloy using high-frequency electromagnetic casting (HFEMC) and electromagnetic stirring (EMS) was explored, and the microstructure, hot compressive deformation characteristics, and processing maps of the as-cast and homogenized EMS 7075 alloys were examined. The obtained results were compared with those of an alloy of the same composition, produced by direct chill casting (DCC). Application of the HFEMC/EMS technology resulted in grain refinement and suppression of dendritic growth. The grain size of the as-cast EMS 7075 alloy was smaller than that of the as-cast DCC 7075 alloy by more than half. This grain-size reduction increased the strain rate sensitivity and decreased the flow stress. The grain refinement also resulted in enhanced hot workability. Hot workability of the EMS 7075 alloy, however, considerably deteriorated after homogenization treatment. This resulted from the disappearance of the solute-segregated phases that play a role of accelerating dynamic recovery and continuous dynamic recrystallization during compressive deformation and the occurrence of considerable grain coarsening during homogenization treatment. The as-cast EMS 7075 alloy also showed a higher quality of post-hot working microstructure (after T6 heat treatment) compared to the homogenized EMS 7075 alloy. This resulted because the segregated phases in the as-cast microstructure served as the nucleation sites for new grains during static recrystallization by having created localized regions of high dislocation density around them during compressive deformation, especially at high strain rates. The current study showing that the as-cast EMS microstructure can yield a high hot workability as well as a high quality of post-hot working microstructure encourages the direct use of as-cast EMS 7075 alloy billets as feedstock for hot extrusion or forging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. C. Vives and R. Ricou: Metall. Trans. B, 1985, vol. 16, pp. 377–84.

    Article  Google Scholar 

  2. J.L. Meyer, J. Szekely, N. Elkaddah, C. Vives and R. Ricou: Metall. Trans. B, 1987, vol. 18, pp. 529–38.

    Article  Google Scholar 

  3. K.H. Spitzer, G. Reiter and K. Schwerdtfeger: ISIJ. Int, 1996, vol. 36, pp.487–92.

    Article  Google Scholar 

  4. J. W. Evans: JOM, 1995, vol. 47, pp. 38–41.

    Article  Google Scholar 

  5. J. M. Drezet, M. Rappaz, B. Carrupt and M. Plata: Metall. Trans. B, 1995, vol. 26, pp. 821–29.

    Article  Google Scholar 

  6. B. Q. Li: JOM-e, 1998, vol. 50 pp. 1–10.

    Google Scholar 

  7. H. Nakata, T. Inoue, H. Mon, K. Ayata, T. Murakami and T. Kominami: ISIJ. Int, 2002, vol. 42, pp. 264–72.

    Article  Google Scholar 

  8. J. P. Park, M. G. Kim, U. S. Yoon, W. J. Kim: J. Mater. Sci, 2009, vol. 44, pp. 47–54.

    Article  Google Scholar 

  9. J. P. Park, H. Kim, H. Jeong, G. Kim, M J. Cho, J. S. Chung, M. Yoon, K. R. Kim and J. Choi: ISIJ. Int, 2003, vol. 43, pp. 813–19.

    Article  Google Scholar 

  10. H. Hao, X. Zhang, S. Yao and J. Jin: Mater. Trans, 2007, vol. 48, pp. 2194–201.

    Article  Google Scholar 

  11. J. Dong, J. Cui, F. Yu, C. Ban and Z. Zhao: Metall. Trans. A, 2004, vol. 35, pp. 2487–94.

    Article  Google Scholar 

  12. B. Zhang, J. Cui and G. Lu: Mater. Sci. Eng. A, 2003, vol. 355, pp. 325–30.

    Article  Google Scholar 

  13. Y. Zuo, J. Cui, J. Dong and F. Yu: J. Alloys Compd., 2005, vol. 402, pp. 149–55.

    Article  Google Scholar 

  14. S. W. Kim, H. Hao, U. J. Lee, K. D. Woo and J. Z. Jin: Mater. Trans, 2001, vol. 42, pp. 1952–58.

    Article  Google Scholar 

  15. W. D. Griffiths and D. G. McCartney: Mater. Sci. Eng. A, 1997, vol. 222, pp. 140–48.

    Article  Google Scholar 

  16. C. Mapelli, A. Gruttadauria, M. Peroni and J. Mat: Proc. Tech., 2010, vol. 210, pp. 306–14.

    Article  Google Scholar 

  17. M. Rajamuthamilselvan and S. Ramanathan: J. alloys compd., 2011, vol. 509, pp. 948–52.

    Article  Google Scholar 

  18. Z. C. Sun, L. S. Zheng and H. Yang: Mater. Charact., 2014, vol. 90, pp. 71–80.

    Article  Google Scholar 

  19. M.R. Rokni, A. Z. Hanzaki, Ali A. Roostaei and A. Abolhasani: Mater. Design, 2011, vol. 32, pp. 4955–60.

    Article  Google Scholar 

  20. M. R. Rokni, A. Zarei-Hanzaki, A. A. Roostaei and H. R. Abedi: Mater. Design, 2011, vol. 32, pp.2339–44.

    Article  Google Scholar 

  21. Y. Yang, Z. Zhang, X. Li, Q. Wang and Y. Zhang: Mater. Design, 2013, vol. 51, pp. 592–97.

    Article  Google Scholar 

  22. Y. C. Lin, L. T. Li, Y. C. Xia and Y. Q. Jiang: J. of Alloys Compd., 2013, vol. 550, pp. 438–45.

    Article  Google Scholar 

  23. Y. C. Lin, L. T. Li, Y. X. Fu and Y. Q. Jiang: J. Mater. Sci, 2013, vol. 47, pp. 1306–18.

    Article  Google Scholar 

  24. L. Guo, S. Yang, H. Yang and J. Zhang: Chin. J. Aeronaut., 2015, vol. 28, pp. 1774–83.

    Article  Google Scholar 

  25. W. S. Lee, W. C. Sue, C. F. Lin and C. J. Wu: J. Mater. Process. Technol, 2000, vol. 100, pp. 116–22.

    Article  Google Scholar 

  26. S. Y. Park and W. J. Kim: J. Mater. Sci. Tech., 2016, vol. 32, pp. 660–70.

    Article  Google Scholar 

  27. L. Backerud, G. Chai and L. Arnberg: Solidification Characteristics of Aluminum Alloys. Vol. 2: Foundry Alloys, American Foundrymen’s Society, Schaumburg, 1996, pp. 266–73

  28. O. D. Sherby, R. H. Klundt and A. K. Miller: Metall. Trans. A, 1977, vol. 8, pp.843–50.

    Article  Google Scholar 

  29. H. J. Frost, M. F. Ashby: Deformation-mechanism Maps, 1st ed., Pergamon Press, UK, 1982, pp. 21.

    Google Scholar 

  30. O. D. Sherby and P. M. Burke: Prog. Mater. Sci., 1967, vol. 13, pp. 325–90.

    Google Scholar 

  31. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark and D.R. Barker: Metall. Trans. A, 1984, vol. 15, pp. 1883–92.

    Article  Google Scholar 

  32. Y.V.R.K. Prasad and J. Mater: Eng. Perform, 2003, vol. 12, pp. 638–45.

    Article  Google Scholar 

  33. T. Y. Kwak, H. K. Lim and W. J. Kim: J. Alloys. Compd., 2015, vol. 648, pp. 146–56.

    Google Scholar 

  34. Y.V.R.K. Prasad: Mater. Sci. Eng. A, 1998, vol. 243, pp. 82–88.

    Article  Google Scholar 

  35. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark and D.R. Barker: Metall. Trans. A, 1984, vol. 15, pp. 1883–92.

    Article  Google Scholar 

  36. I.N. Sneddon, R. Hill, P.M Naghdi and H. Ziegler: Progress in Solid Mechanics. Vol.4, Amsterdam, New York, 1963, pp. 93–191.

  37. S. Gourdet and F. Montheillet: Acta Mater., 2003, vol. 51, pp. 2685–99.

    Article  Google Scholar 

  38. W. H. Van Geertruyden, W. Z. Misiolek and P. T. Wang: Mater. Sci. Eng. A, 2006, vol. 419, pp. 105–14.

    Article  Google Scholar 

  39. A. Rollett, G.S. Rohrer, F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon, UK, 1995, pp. 169–213.

    Google Scholar 

  40. H. M. Chan and F. J. Humphreys: Acta Metall., 1984, vol. 32, pp. 235–43.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Technology Innovation Program (10048322, Continuous casting of high-strength aluminum alloys containing minimum 10 pct solute element) funded by the Ministry of Trade, industry & Energy (MI, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Kim.

Additional information

Manuscript submitted October 5, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.Y., Kim, W.J. Enhanced Hot Workability and Post-Hot Deformation Microstructure of the As-Cast Al-Zn-Cu-Mg Alloy Fabricated by Use of a High-Frequency Electromagnetic Casting with Electromagnetic Stirring. Metall Mater Trans A 48, 3523–3539 (2017). https://doi.org/10.1007/s11661-017-4106-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4106-x

Keywords

Navigation