Skip to main content
Log in

Element Migration and Diffusion at the Bonding Interface of the Bimetallic Composite Billet Produced by the ESRC Method

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A bimetallic GCr15/45 carbon steel has been produced by the newly developed electroslag remelting cladding (ESRC) technique. Based on the solidified precipitates characteristics of the bimetallic materials and the relationship of temperature varying with time at the bimetallic interface during the ESRC process, the one-phase model in DICTRA was selected to calculate the element diffusion behavior at the bimetallic interface in the present study. The calculated result illustrates that the diffusion distance of C (3720 μm) is much larger than that of Cr (42 μm), Si (30 μm), and Mn (34 μm) due to the small atomic size, while the experimental result of the bimetallic interface shows that the transition width of Cr is 1140 μm which is much larger than that of the calculated values by diffusion model. The difference between the above calculated and experimental results illustrates that a fusion bonding with obvious element migration has occurred between the bimetallic metals in addition to the diffusion bonding. Affected by the element migration and diffusion, a good metallurgical bonding with no defects is formed between the bimetallic materials and the microstructure as well as the corresponding properties at the interface change significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Rao, S.J. Wang, J.H. Zhao, M.P. Geng, and G. Ding: J. Iron Steel Res. Int., 2014, vol. 21, pp. 869–77.

    Article  CAS  Google Scholar 

  2. D.J. Lee, D.H. Ahn, E.Y. Yoon, S.I. Hong, S. Lee, and H.S. Kim: Scripta Mater., 2013, vol. 68, pp. 893–96.

    Article  CAS  Google Scholar 

  3. K. Ichino, Y. Kataoka, and T. Koseki: Kawasaki Steel Tech. Rep., 1997, vol. 37, pp. 13–18.

    Google Scholar 

  4. H.G. Fu, A.M. Zhao, J.D. Xing, and D.M. Fu: J. Iron Steel Res. Int., 2002, vol. 9, pp. 32–35.

    CAS  Google Scholar 

  5. C.K. Kim, J.I. Par, S. Lee, Y.C. Kim, N.J. Kim, and J.S. Yang: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 87–97.

    Article  CAS  Google Scholar 

  6. M. Hashimoto, T. Tanaka, T. Inoue, M. Yamashita, R. Kurahashi, and R. Terakado: ISIJ Int., 2002, vol. 42, pp. 982–89.

    Article  CAS  Google Scholar 

  7. G.J. Li and M.J. Feng: J. Cent. South Univ., 2014, vol. 21, pp. 849–56.

    Article  CAS  Google Scholar 

  8. A. Yamamoto, Y. Ishii, H.G. Kang, F. Sakata, A. Sonoda, and M. Hashimoto: Mater. Trans., 2019, vol. 60, pp. 770–76.

    Article  CAS  Google Scholar 

  9. M. Shimizu, O. Shitamura, S. Matsuo, T. Kamata, and Y. Kondo: ISIJ Int., 1992, vol. 32, pp. 1244–49.

    Article  CAS  Google Scholar 

  10. B.I. Medovar, L.B. Medovar, A.V. Chernets, B.B. Fedorovskii, I.A. Lantsman, A.P. Beloglazov, V.E. Shevchenko, V.I. Ous, J. Shutey, and T. Nylen: 38th Mech. Working Steel Process. Conf. Proc., 1997, Cleveland, Ohio, pp. 83–87.

  11. L.B. Medovar, A.P. Stovpchenko, V.Y. Saenko, G.V. Noshchenko, B.B. Fedorovskii, V.L. Petrenko, I.A. Lantsman, and V.M. Zhuravel: Russ. Metall. (Met.), 2011, vol. 2011, pp. 1118–23.

    Article  Google Scholar 

  12. Z.H. Jiang, Y.L. Cao, Y.W. Dong, D. Hou, H.B. Cao, and J.X. Fan: Steel Res. Int., 2016, vol. 87, pp. 699–711.

    Article  CAS  Google Scholar 

  13. Y.L. Cao, Z.H. Jiang, Y.W. Dong, X. Deng, L. Medovar, and G. Stovpchenko: ISIJ Int., 2018, vol. 58, pp. 1052–60.

    Article  CAS  Google Scholar 

  14. G. Polishko, G. Stovpchenko, L. Medovar, and L. Kamkina: Ironmak. Steelmak., 2019, vol. 46, pp. 789–93.

    Article  CAS  Google Scholar 

  15. Y.L. Cao, Z.H. Jiang, Y.W. Dong, G.Q. Li, Z.W. Hou, and Q. Wang: Ironmak. Steelmak., 2020, vol. 47, pp. 686–92.

    Article  CAS  Google Scholar 

  16. Y.L. Cao, Y.W. Dong, Z.H. Jiang, G.Q. Li, and Z.R. Zhao: ISIJ Int., 2021, vol. 61, pp. 2127–34.

    Article  CAS  Google Scholar 

  17. X.L. Shi, Y.H. Jiang, R. Zhou, and Y.Q. Zhang: The 12th China–Russia Symp. Adv. Mater. Technol., The Nonferrous Metals Society of China, Kunming, China, 2013, pp. 402–6.

  18. S.Y. Jiao, J.X. Dong, M.C. Zhang, and X.S. Xie: J. Mater. Eng., 2009, vol. 54, pp. 10–16.

    Google Scholar 

  19. A. Borgenstam, A. Engstrom, L. Höglund, and J. Ågren: J. Phase Equilib., 2000, vol. 21, pp. 269–80.

    Article  CAS  Google Scholar 

  20. Y.P. Zhao, J.M. Gong, X.W. Wang, L.M. Shen, and Q.N. Li: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2218–23.

    Article  Google Scholar 

  21. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

  22. P.D. Jablonski and C.J. Cowen: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 182–86.

    Article  CAS  Google Scholar 

  23. Y.L. Cao, G.Q. Li, Z.H. Jiang, Y.W. Dong, Z.R. Zhao, and C.R. Niu: Mater. Trans., 2022, vol. 61, pp. 2228–35.

    Article  Google Scholar 

  24. Z.H. Jiang: Physical Chemistry and Transport Phenomena of Electroslag Remelting, Northeastern University Press, Shenyang, 2000, p. 223.

    Google Scholar 

  25. Q.F. Hou and K. Li: NISCO Technol. Manag, 2015, vol. 41, pp. 28–32.

    Google Scholar 

  26. Y.L. Cao, G.Q. Li, Z.H. Jiang, Y.W. Dong, Z.R. Zhao, and C.R. Niu: High Temp. Mater. Process., 2020, vol. 39, pp. 270–80.

    Article  CAS  Google Scholar 

  27. T. Gietzelt, V. Toth, and A. Huell: Adv. Eng. Mater., 2018, vol. 20, pp. 1–10.

    Article  Google Scholar 

  28. E. Akca and A. Gursel: Period. Eng. Nat. Sci., 2015, vol. 3, pp. 12–16.

    Google Scholar 

  29. C.Y. Sun, L. Li, M.W. Fu, and Q.J. Zhou: Mater. Des., 2016, vol. 94, pp. 433–43.

    Article  Google Scholar 

  30. B. Kurt, N. Orhan, and A. Hasçalık: Mater. Des., 2007, vol. 28, pp. 2229–33.

    Article  CAS  Google Scholar 

  31. A. Laik, P.S. Gawde, K. Bhanumurthy, and G.B. Kale: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 733–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the financial support of the National Natural Science Foundation of China (52004188).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Ma, C., Jiang, Z. et al. Element Migration and Diffusion at the Bonding Interface of the Bimetallic Composite Billet Produced by the ESRC Method. Metall Mater Trans B 53, 2398–2406 (2022). https://doi.org/10.1007/s11663-022-02538-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02538-x

Navigation