Skip to main content
Log in

Peculiarities of Structure Formation in Copper/Steel Bimetal Fabricated by Electron-Beam Additive Technology

  • Published:
Russian Physics Journal Aims and scope

In the present paper, the microstructure of heterogeneous material bimetal compound fabricated by wire-feed electron-beam additive technology from CrNiTi stainless steel and С11000 copper has been investigated. The bimetallic compound is characterized by the well-defined interface between the two materials and possesses two-phase transition areas on both sides of the interface. The heterogeneity of strength properties (microhardness) in the transition zones is associated with a solid solution hardening of the bimetal basis components and formation of composite structures in the transition zone of the bimetal: spherical inclusions of steel in the copper part and copper inclusions in the steel section. In the copper part of the bimetal sample, a heterogeneous grain structure is formed – areas with macroscale non-equiaxed grain structure and zones with spherical grains were observed. The heterogeneity of grain structure does not have significant influence on the yield strength, but affects the macroscopic deformation pattern of the bimetal copper part, as has been revealed by microstructural analysis of slip traces and grain structure calculated using the Hall–Petch relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yu. Tarasov, A. V. Filippov, N. L. Savchenko, et al., Int. J. Adv. Manuf. Tech., 99, 2353–2363 (2018).

    Article  Google Scholar 

  2. H. D. Carlton, A. Haboub, G. F. Gallegos, et al., Mater. Sci. Eng. A, 651, 406–414 (2016).

    Article  Google Scholar 

  3. K. Schmidtke, F. Palm, and A. Hawkins, Phys. Procedia, 12, 369–374 (2011).

    Article  ADS  Google Scholar 

  4. E. Louvis, P. Fox, and C. J. Sutcliffe, Proc. Tech., 211, 275–284 (2011).

    Article  Google Scholar 

  5. K. Yamanaka, W. Saito, M. Mori, et al., Addit. Manuf., 8, 105–109 (2015).

    Article  Google Scholar 

  6. A. Yu. Nikonov, A. M. Zharmukhambetova, A. V. Ponomareva, et al., Phys. Mesomech., 21, 43–50 (2018).

    Article  Google Scholar 

  7. Y. Zhai, H. Galarraga, D. A. Lados, et al., Procedia Eng., 114, 658–666 (2015).

    Article  Google Scholar 

  8. P. Nie, O. A. Ojo, and Z. Li, Acta Mater., 77, 85–95 (2014).

    Article  Google Scholar 

  9. X. Z. Xin, N. Xiang, J. Chen, et al., Mater. Lett., 88, 101–103 (2012).

    Article  Google Scholar 

  10. T. Abe and H. Sasahara, Precis Eng., 45, 387–395 (2016).

    Article  Google Scholar 

  11. S. Meco, G. Pardal, and S. Ganguly, Opt. Lasers Eng., 67, 22–30 (2015).

    Article  Google Scholar 

  12. J. Kar, S. K. Roy, G. G. Roy, et al., Mater. Process. Technol., 233, 174–185 (2016).

    Article  Google Scholar 

  13. O. M. Al-Jamal, S. Hinduja, and L. Li, CIRP Ann., 57, 239–242 (2008).

    Article  Google Scholar 

  14. C. Tana, K. Zhoua, W. Ma, et al., Mater. Design, 155, 77–85 (2018).

    Article  Google Scholar 

  15. S. V. Shukhardin, ed., Bi- and Multicomponent Copper-Based Systems [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  16. P. Åkerfeldt, M.-L. Antti, and R. Pederson, Mater. Sci. Eng. A, 674, 428–437 (2016).

    Article  Google Scholar 

  17. É. V. Kozlov, N. A. Konev, A. N. Zhdanov, et al., Fizich. Mesomekh., 4, 93–113 (2004).

    Google Scholar 

  18. É. V. Kozlov, A. N. Zhdanov, L. N. Ignatenko, et al., in: Ultrafine Grained Materials II, Warrendale, TMS (2012), pp. 419–428.

    Google Scholar 

  19. T. H. Johnston and C. E. Feltner, Metall. Trans., 1, 1161–1167 (1970).

    Article  Google Scholar 

  20. A. M. Glezer, Principles of Plastic Deformation of Nanostructural Materials [in Russian], Fizmatlit, Moscow (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Osipovich.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 166–174, August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipovich, K.S., Chumaevskii, A.V., Eliseev, A.A. et al. Peculiarities of Structure Formation in Copper/Steel Bimetal Fabricated by Electron-Beam Additive Technology. Russ Phys J 62, 1486–1494 (2019). https://doi.org/10.1007/s11182-019-01867-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01867-w

Keywords

Navigation