Skip to main content

Advertisement

Log in

Experimental Characterization and Microstructural Evaluation of Silicon Bronze-Alloy Steel Bimetallic Structures by Additive Manufacturing

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper proposes a novel and efficient preparation method for copper-steel bimetallic materials. A transition welding wire for copper-steel gradient connections was designed, and then gas metal arc welding (GMAW) additive manufacturing processes were explored. The effects of the process and material on the microstructure, interface characteristics, and mechanical properties of copper-steel bimetallic materials were systematically studied. The results show that copper-steel bimetallic thin-walled parts can be well formed, which confirms the possibility of the arc additive manufacturing of copper-steel bimetallic parts. With the direct deposition of silicon bronze on the surface of low-alloy steel, the melting unmixed zone (MUZ) appears at the bonding interface of low-alloy steel and silicon bronze, which is prone to produce microcracks, leading to fracture failure of the joint. However, with the addition of the Cu-Ni interlayer, the Fe, Ni, and Cu elements in the bronze interface between the low-alloy steel and silicon were continuously diffused, which improved the nonuniformity of the Fe-rich phase in silicon bronze matrix, and realized the gradient connection at the welding joint. Comparing the tensile properties and microhardness of the joints, it can be found that the tensile strength of the low-alloy steel/Cu-Ni/silicon bronze joint was 66.36 pct higher than that of the alloy steel/silicon bronze joint, which can reach approximately 345.2 MPa and shows a typical ductile fracture mechanism. Additionally, the microhardness of the transition zone in the low-alloy steel/Cu-Ni/silicon bronze joint was more uniform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.R. Wang, Y.M. Gao, Y.F. Li, W.Y. Zhai, L. Sun, and C. Zhang: Emerg. Mater. Res., 2019, vol. 8(4), pp. 538–51. .

    Google Scholar 

  2. J.N. Yang, L.J. Zhang, J. Ning, Q.L. Bai, X.Q. Yin, J.J. Zhang, and L.X. Zhang: Appl. Therm. Eng., 2017, vol. 126, pp. 867–83. .

    Article  CAS  Google Scholar 

  3. Z. Cheng, J.H. Huang, Z. Ye, Y. Chen, J. Yang, and S.H. Chen: J. Mater. Process. Technol., 2019, vol. 265, pp. 87–98. .

    Article  CAS  Google Scholar 

  4. A.V. Müller, B. Böswirth, V. Cerri, H. Greuner, R. Neu, U. Siefken, E. Visca, and J.H. You: Phys. Scr., 2020, vol. T171, pp. 014–5. .

    Article  Google Scholar 

  5. M.H. Zhu, P.F. Tian, R. Kurtz, T. Lunkenbein, J. Xu, R. Schlögl, and I.E. Wachs: Ange. Chem., 2019, vol. 131(27), pp. 9181–5. .

    Article  Google Scholar 

  6. K. Shaheen, Z. Shah, A. Asad, T. Arshad, S.B. Khan, and H.L. Suo: ACS Omega., 2020, vol. 5(26), pp. 15992–6002. .

    Article  CAS  Google Scholar 

  7. Y.Y. Poo-arporn, S. Duangnil, D. Bamrungkoh, and P. Klangkaew: J. Mater. Process. Technol., 2020, vol. 277, p. 116490. .

    Article  CAS  Google Scholar 

  8. B.X. Liu, J.Y. Wei, M.X. Yang, F.X. Yin, and K.C. Xu: Vacuum., 2018, vol. 154, pp. 250–8. .

    Article  CAS  Google Scholar 

  9. W.D. Chen, Y.G. Li, Q. Zou, J.C. Xiong, Z.C. Lou, and Z.J. Jiao: Int. J. Adv. Manuf. Technol., 2021, vol. 112(3), pp. 1–13. .

    Article  Google Scholar 

  10. P. Jakupi, P.G. Keech, I. Barker, S. Ramamurthy, R.L. Jacklin, and D.W. Shoesmith: J. Nucl. Mater., 2015, vol. 466, pp. 1–11. .

    Article  CAS  Google Scholar 

  11. M. Teimouri, W.Q. Gao, and A. Godfrey: Mater. Sci. Technol., 2020, vol. 36(12), pp. 1364–71. .

    Article  CAS  Google Scholar 

  12. A. Durgutlu, B. Gülenç, and F. Findik: Mater. Des., 2005, vol. 26(6), pp. 497–507. .

    Article  CAS  Google Scholar 

  13. H. Zhang, K.X. Jiao, J.L. Zhang, and J.P. Liu: Mater. Sci. Eng. A., 2019, vol. 756, pp. 430–41. .

    Article  CAS  Google Scholar 

  14. H. Zhang, K.X. Jiao, J.L. Zhang, and J.P. Liu: Mater. Des., 2018, vol. 154, pp. 140–52. .

    Article  CAS  Google Scholar 

  15. H. Zhang, K.X. Jiao, and J.L. Zhang: Mater. Sci. Eng. A., 2018, vol. 731, pp. 278–87. .

    Article  CAS  Google Scholar 

  16. S. Ramachandran and A.K. Lakshminarayanan: Trans. Nonferrous. Met. Soc. China., 2020, vol. 30(3), pp. 727–45. .

    Article  CAS  Google Scholar 

  17. Y.F. Meng, X.W. Li, M. Gao, and X.Y. Zeng: Opt. Laser Technol., 2019, vol. 111, pp. 140–5. .

    Article  CAS  Google Scholar 

  18. C.W. Yao, B.S. Xu, X.C. Zhang, J. Huang, J. Fu, and Y.X. Wu: Opt. Lasers Eng., 2009, vol. 47(78), pp. 807–14. .

    Article  Google Scholar 

  19. Z. Shen, Y. Chen, M. Haghshenas, T. Nguyen, J. Galloway, and A.P. Gerlich: Mater. Charact., 2015, vol. 104, pp. 1–9. .

    Article  CAS  Google Scholar 

  20. T.H. Wang, S. Shukla, S.S. Nene, and M. Frank: Metall. Mater. Trans. A., 2018, vol. 49A(7), pp. 2578–82. .

    Article  Google Scholar 

  21. N. Switzner, H. Queiroz, and J. Duerst: Mater. Sci. Eng. A., 2018, vol. 709, pp. 55–64. .

    Article  CAS  Google Scholar 

  22. W.Y. Li, K. Yang, S. Yin, X.W. Yang, Y.X. Xu, and R. Lupoi: J. Mater. Sci. Technol., 2018, vol. 34(3), pp. 440–57. .

    Article  Google Scholar 

  23. C. Zhang, F. Chen, and Z.F. Huang: Mater. Sci. Eng. A., 2019, vol. 764, p. 138209. .

    Article  CAS  Google Scholar 

  24. N. Li, S. Huang, G.D. Zhang, R.Y. Qin, W. Liu, H.P. Xiong, and G.Q. Shi: J. Mater. Sci. Technol., 2019, vol. 35(2), pp. 242–69. .

    Article  Google Scholar 

  25. Y.H. Wang, X.Z. Chen, S. Konovalov, C.C. Su, A.N. Siddiquee, and N. Gangil: Appl. Surf. Sci., 2019, vol. 487, pp. 1366–75. .

    Article  CAS  Google Scholar 

  26. G.Q. Chen, X. Shu, J.P. Liu, B.G. Zhang, and J.C. Feng: Vacuum., 2020, vol. 171, p. 109009. .

    Article  CAS  Google Scholar 

  27. X. Shu, G.Q. Chen, J.P. Liu, B.G. Zhang, and J.C. Feng: Mater. Lett., 2018, vol. 213, pp. 374–7. .

    Article  CAS  Google Scholar 

  28. I. Magnabosco, P. Ferro, and F. Bonollo: Mater. Sci. Eng. A., 2006, vol. 424(1–2), pp. 163–73. .

    Article  Google Scholar 

  29. L.M. Liu, Z.L. Zhuang, F. Liu, and M.L. Zhu: Int. J. Adv. Manuf. Technol., 2013, vol. 69(9–12), pp. 2131–7. .

    Article  Google Scholar 

  30. Q.W. Guo, G.S. Wang: Chemical Industry Press, 2010, pp. 61–117.

  31. M. Velu and S. Bhat: Mater. Des., 2013, vol. 47, pp. 793–809. .

    Article  CAS  Google Scholar 

  32. H.Q. Hu, F.N. Shen, Z.D. Wang: Machine Press, 2000, pp. 41–47.

  33. K.S. Osipovich, E.G. Astafurova, and A.V. Chumaevskii: J. Mater. Sci., 2020, vol. 55(22), pp. 9258–72. .

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by National Natural Science Foundation of China, Grant Number 51904243; Natural Science Foundation of Shaanxi Provincial Department of Education, Grant Number 19JK0573; and Natural Science Foundation of Shaanxi Province, Grant Numbers 2019JQ-284 and 2019JZ-31.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 10, 2021, accepted July 26, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, Y., Du, M. et al. Experimental Characterization and Microstructural Evaluation of Silicon Bronze-Alloy Steel Bimetallic Structures by Additive Manufacturing. Metall Mater Trans A 52, 4664–4674 (2021). https://doi.org/10.1007/s11661-021-06418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06418-y

Navigation