Skip to main content

Advertisement

Log in

Extraction of Vanadium From Vanadium Slag Through a New Technique Route Including Na2O2-Briquetting Roasting Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The material accumulation during roasting in the practical production causes the hypoxia of the internal materials, leading to the relatively lower vanadium recovery than that in theoretical studies. This work aims to solve the problem of material hypoxia through the Na2O2-briquetting roasting route. The vanadium slag and Na2O2 powders were mixed, briquetted, and roasted at various parameters. The generated phases and their distributions were analyzed using X-ray diffraction, Fourier transform infrared spectroscopy, and electron probe microanalysis. The analyzing results showed that Fe2O3, Fe3O4, Mg0.165Mn0.835O, CaTiO3, and Na3VO4 were generated during roasting. The solid–solid reaction between V2O5 and Na2O was described using the vacancy-mediated diffusion mechanism. Na+ (or V5+), in the Na2O (or V2O5) layer, jumped and diffused through the Na+ (or V5+) vacancies (in the Na3VO4 layer) to the Na3VO4/V2O5 (or Na3VO4/Na2O) interface. Na+ (or V5+) reacted with V2O5 (or Na2O) and O2 decomposed from Na2O2 or transported from the air to generate Na3VO4. The roasted mixture was leached in an aqueous solution to study the effects of the roasting variables on the vanadium leaching recovery. The vanadium leaching recovery was very sensitive to the roasting variables, it showed very complicated relationships with the Na/V molar ratio, temperature, time, and briquetting pressure. The maximum vanadium leaching recovery of 95.57 pct was achieved when the Na/V molar ratio, temperature, time, and pressure were optimized as 3/1, 850 °C, 2.5 hours, and 5 MPa, respectively. The leaching solution containing vanadium was processed via precipitation and calcination to gather vanadium. The obtained compound was identified as V2O5 with a purity of 96.84 pct, based on the high consistency of diffraction peaks between the present work and that of the joint committee on powder diffraction standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Xin, N. Wang, M. Chen, and C. Chen: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 815–29.

    Article  Google Scholar 

  2. X. Zhang, B. Xie, J. Diao, and X. Li: Ironmak. Steelmak., 2013, vol. 39, pp. 147–54.

    Article  CAS  Google Scholar 

  3. H. Li, C. Wang, Y. Yuan, Y. Guo, J. Diao, and B. Xie: J. Clean. Prod., 2020, vol. 260, p. 121091.

    Article  CAS  Google Scholar 

  4. J. Diao, B. Xie, Y. Wang, and C. Ji: Ironmak. Steelmak., 2013, vol. 36, pp. 476–80.

    Article  Google Scholar 

  5. J. Wen, T. Jiang, J. Wang, H. Gao, and L. Li: J. Hazard. Mater., 2019, vol. 378, p. 120733.

    Article  CAS  Google Scholar 

  6. Abhilash, H. Agarwal, P. Meshram, R.B. Meshram, S. Jha, J.N. Patel, M. Soni, K. Rokkam, and S. Mashruwala: Sep. Sci. Technol., 2021, vol. 56, pp. 3183–3200.

  7. R. Deng, Z. Xie, Z. Liu, L. Deng, and C. Tao: Hydrometallurgy., 2019, vol. 189, p. 105110.

    Article  CAS  Google Scholar 

  8. J. Xiang, Q. Huang, X. Lv, and C. Bai: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 2759–67.

    Article  Google Scholar 

  9. G.B. Sadykhov: Russ. Metall., 2009, vol. 2008, pp. 449–58.

    Article  Google Scholar 

  10. W.C. Song, H. Li, F.X. Zhu, K. Li, and Q. Zheng: Trans. Nonferr. Met. Soc., 2014, vol. 24, pp. 2687–94.

    Article  CAS  Google Scholar 

  11. W.C. Song, K. Li, Q. Zheng, and H. Li: Waste Biomass Valoriz., 2013, vol. 5, pp. 327–32.

    Article  Google Scholar 

  12. Z. Fu, Y. Peng, W. He, G. Gao, B. Shen, and X. Lu: Iron Steel Vanadium Titanium., 2014, vol. 35, pp. 1–4.

    Google Scholar 

  13. Q. Wang, X. Guo, and Q. Tian: Trans. Nonferr. Met. Soc., 2017, vol. 27, pp. 946–53.

    Article  CAS  Google Scholar 

  14. H.R. Yue and X.X. Xue: J. Hazard. Mater., 2020, vol. 393, p. 122368.

    Article  CAS  Google Scholar 

  15. H.R. Yue, X.X. Xue, and W.J. Zhang: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 944–55.

    Article  Google Scholar 

  16. H.R. Yue, X.X. Xue, and W.J. Zhang: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 3477–89.

    Article  Google Scholar 

  17. H.R. Yue and X.X. Xue: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2358–70.

    Article  Google Scholar 

  18. D. Chen, Z. Liu, B. Fan, J. Li, W. Cao, H. Wang, H. Lu, H. Xu, and R. Zhang: Int. J. Appl. Ceram. Technol., 2014, vol. 11, pp. 946–53.

    Article  CAS  Google Scholar 

  19. N.Y. Mostafa, E.A. Kishar, and S.A. Abo-El-Enein: J. Alloy Compd., 2009, vol. 473, pp. 538–42.

    Article  CAS  Google Scholar 

  20. R. Ramesh, K. Ashok, G.M. Bhalero, S. Ponnusamy, and C. Muthamizhchelvan: Cryst. Res. Technol., 2010, vol. 45, pp. 965–68.

    Article  CAS  Google Scholar 

  21. T. Ozkaya, M.S. Toprak, A. Baykal, H. Kavas, Y. Köseoğlu, and B. Aktaş: J. Alloy Compd., 2009, vol. 472, pp. 18–23.

    Article  CAS  Google Scholar 

  22. S.J. Mousavi: Dig. J. Nanomater. Bios., 2014, vol. 9, pp. 1059–63.

    Google Scholar 

  23. T. Machappa and M.V.N.A. Prasad: Physica B., 2009, vol. 404, pp. 4168–72.

    Article  CAS  Google Scholar 

  24. X. Zhang, F. Liu, X. Xue, and T. Jiang: J. Alloy Compd., 2016, vol. 686, pp. 356–65.

    Article  CAS  Google Scholar 

  25. J. Wen, T. Jiang, J. Wang, L. Lu, and H. Sun: J. Clean. Prod., 2020, vol. 261, p. 121205.

    Article  CAS  Google Scholar 

  26. Y. Ji, S. Shen, J. Liu, S. Yan, and Z. Zhang: ACS Sustain. Chem. Eng., 2017, vol. 5, pp. 6008–15.

    Article  CAS  Google Scholar 

  27. Z. Ren, X. Hu, S. Li, X. Xue, and K. Chou: Int. J. Min. Met. Mater., 2013, vol. 20, pp. 273–78.

    Article  CAS  Google Scholar 

  28. H. Li, H. Fang, K. Wang, W. Zhou, Z. Yang, X. Yan, W. Ge, Q. Li, and B. Xie: Hydrometallurgy., 2015, vol. 156, pp. 124–35.

    Article  CAS  Google Scholar 

  29. R. Deng, H. Xiao, Z. Xie, Z. Liu, Q. Yu, G. Chen, and C. Tao: Chin. J. Chem. Eng., 2020, vol. 28, pp. 2208–13.

    Article  CAS  Google Scholar 

  30. X. Fang, S. Shen, N. Li, and Q. Hou: Steel Res. Int., 2020, vol. 91, p. 1900533.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (Grant Nos. 52104296, 21908020, and U1908226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Rui Yue.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, HR., Liu, JX., Cheng, GJ. et al. Extraction of Vanadium From Vanadium Slag Through a New Technique Route Including Na2O2-Briquetting Roasting Process. Metall Mater Trans B 53, 2227–2238 (2022). https://doi.org/10.1007/s11663-022-02522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02522-5

Navigation