Skip to main content
Log in

Extraction of Vanadium from Vanadium Slag Via Non-salt Roasting and Ammonium Oxalate Leaching

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A clean method featuring non-salt roasting followed by (NH4)2C2O4 leaching to recover vanadium from vanadium slag was proposed. The carcinogenic Cr6+ compounds and exhaust gases were avoided, and the water generated from vanadate precipitation may be recycled and reused in this new leaching process. The leaching residues may be easily used by a blast furnace. Moreover, (NH4)2C2O4 solution was used as a leaching medium to avoid expensive and complicated ammonium controlling operations as a result of the stability of (NH4)2C2O4 at a high temperature. The transformation mechanisms of vanadium- and chromium-bearing phases were systematically investigated by x-ray diffraction analysis and scanning electron microscopy with energy-disperse x-ray spectrometry, respectively. In addition, the effects of oxygen concentration, roasting temperature, and holding time on vanadium recovery were investigated. Finally, the effects of leaching variables on the vanadium leaching rate were also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Y. Liu, Z. Liu, B. Mnichowicz, A.V. Harinath, H. Li, and B. Bahrami, Chem. Eng. J. 287, 680 (2016).

    Article  Google Scholar 

  2. A. Mase, T. Sugita, M. Mori, S. Iwamoto, T. Tokutome, K. Katayama, and H. Itabashi, Chem. Eng. J. 225, 440 (2013).

    Article  Google Scholar 

  3. R. Moskalyk and A. Alfantazi, Miner. Eng. 16, 793 (2003).

    Article  Google Scholar 

  4. S. Gustafsson and W.W. Zhong, Int. J. Miner. Process. 15, 103 (1985).

    Article  Google Scholar 

  5. Y.-M. Zhang, S.-X. Bao, T. Liu, T.-J. Chen, and J. Huang, Hydrometallurgy 109, 116 (2011).

    Article  Google Scholar 

  6. H. Barolin, Oxidation of vanadium slag, 1st ed. (Beijing: Metallurgical Industry Press, 1982), pp. 121–131.

    Google Scholar 

  7. L. Fang, Ferro-Alloys 227, 41 (2012).

    Google Scholar 

  8. Z. Zhonghao and W. Yanheng, Chem. World 6, 290 (2000).

    Google Scholar 

  9. H.-Y. Li, K. Wang, W.-H. Hua, Z. Yang, W. Zhou, and B. Xie, Hydrometallurgy 160, 18 (2016).

    Article  Google Scholar 

  10. M. Tavakoli and D. Dreisinger, Hydrometallurgy 147, 83 (2014).

    Article  Google Scholar 

  11. M. Li, B. Liu, S. Zheng, S. Wang, H. Du, D.B. Dreisinger, and Y. Zhang, J. Clean. Prod. 149, 206 (2017).

    Article  Google Scholar 

  12. X. Meng and K.N. Han, Min. Proc. Ext. Met. Rev. 16, 23 (1996).

    Article  Google Scholar 

  13. P. Vlek and J. Stumpe, Soil Sci. Soc. Am. J. 42, 416 (1978).

    Article  Google Scholar 

  14. M. Li, S. Zheng, B. Liu, S. Wang, D. Dreisinger, Y. Zhang, H. Du, and Y. Zhang, Min. Proc. Ext. Met. Rev. 38, 228 (2017).

    Article  Google Scholar 

  15. R.D. Weir, C.W. Nelson, (Google Patents: 2011)

  16. A. Fotiev and V. Strelkov, Rus. J. Inorg. Chem. 26, 942 (1981).

    Google Scholar 

  17. S. Chung, S. Shin, A. Andriiko, and P. Rudenok, J. Mater. Res. 14, 2929 (1999).

    Article  Google Scholar 

  18. G. Clark and R. Morley, J. Solid State Chem. 16, 429 (1976).

    Article  Google Scholar 

  19. S. Basu and M. Taniguchi, J. Therm. Anal. 29, 1209 (1984).

    Google Scholar 

  20. M. Maciejewski, A. Reller, and A. Baiker, Thermochim. Acta 96, 81 (1985).

    Article  Google Scholar 

  21. P. Stander and C. Van Vuuren, Thermochim. Acta 157, 347 (1990).

    Article  Google Scholar 

  22. C. Van Vuuren and P. Stander, Thermochim. Acta 254, 227 (1995).

    Article  Google Scholar 

  23. I. Barin, Thermochemical data of pure substances, 3rd ed. (New York: Wiley, 1997).

    Google Scholar 

  24. M. Li, S. Zheng, B. Liu, H. Du, D.B. Dreisinger, L. Tafaghodi, and Y. Zhang, Waste Manag 65, 128 (2017).

    Article  Google Scholar 

  25. C. Zhang, X. Min, J. Zhang, M. Wang, Y. Li, and J. Fei, J. Clean. Prod. 113, 910 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants 51404227, 51604254, and 91634111), the Science and Technology Service Network Initiative for the Chinese Academy of Sciences (Grant KFJ-SW-STS-148), and the National Basic Research Program of China (973 Program, Grant 2013CB632605). The financial support provided by the China Scholarship Council (CSC) for Meng Li (201506080059) to the University of British Columbia (UBC) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biao Liu or David Bruce Dreisinger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Du, H., Zheng, S. et al. Extraction of Vanadium from Vanadium Slag Via Non-salt Roasting and Ammonium Oxalate Leaching. JOM 69, 1970–1975 (2017). https://doi.org/10.1007/s11837-017-2494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2494-4

Navigation