Skip to main content
Log in

Recovery of vanadium from vanadium slag by composite additive roasting–acid leaching process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To minimize the vanadium content in the vanadium extraction tailings, composite additive roasting with (CaO + MgO) and subsequent acid leaching process was carried out dealing with vanadium-bearing converter slag. The effect of additive with different MgO/(CaO + MgO) molar ratios on the roasting and leaching behaviours of vanadium slag was investigated, and the optimum process conditions were obtained. The results show that in the roasting experiment, under the conditions of roasting temperature of 850 °C and roasting time of 2 h, the main kinds of vanadate transformed from Ca2V2O7 to Ca5Mg4V6O24 and then to Mg2V2O7 with the increase in the MgO/(CaO + MgO) molar ratio. In the leaching experiment, under the conditions of particle size less than 75 μm, leaching temperature of 50 °C, pH of 2.5, liquid–solid ratio of 20:1, and MgO/(CaO + MgO) molar ratio of 1:3, the leaching efficiency of vanadium is increased by about 5%, but the substitution of MgO for most or all of CaO will significantly reduce the leaching efficiency of vanadium. Furthermore, the leaching efficiency of impurities (P and Cr) can also be decreased by a composite addictive (CaO + MgO) roasting process. The X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry, and X-ray photoelectron spectroscopy of the original vanadium slag and solid products of both roasting and leaching processes were also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.R. Moskalyk, A.M. Alfantazi, Miner. Eng. 16 (2003) 793–805.

    Article  Google Scholar 

  2. D.S. Chen, H.X. Zhao, G.P. Hu, T. Qi, H.D. Yu, G.Z. Zhang, L.N. Wang, W.J. Wang, J. Hazard. Mater. 294 (2015) 35–40.

    Article  Google Scholar 

  3. S.M.J. Mirazimi, F. Rashchi, M. Saba, Chem. Eng. Res. Des. 94 (2015) 131–140.

    Article  Google Scholar 

  4. G.Q. Zhang, T.A. Zhang, G.Z. Lü, Y. Zhang, Y. Liu, G. Xie, Rare Met. Mater. Eng. 44 (2015) 1894–1898.

    Google Scholar 

  5. Z.H. Liu, Y. Li, M.L. Chen, A. Nueraihemaiti, J. Du, X. Fan, C.Y. Tao, Hydrometallurgy 159 (2016) 1–5.

    Article  Google Scholar 

  6. X.S. Li, B. Xie, Int. J. Miner. Metall. Mater. 19 (2012) 595–601.

    Article  Google Scholar 

  7. M. Aarabi-Karasgani, F. Rashchi, N. Mostoufi, E. Vahidi, Hydrometallurgy 102 (2010) 14–21.

    Article  Google Scholar 

  8. J. Wen, T. Jing, J.P. Wang, H.Y. Gao, L.G. Lu, J. Hazard. Mater. 378 (2019) 120733.

    Article  Google Scholar 

  9. G.Q. Zhang, D.M. Luo, C.H. Deng, L. Lv, B. Liang, C. Li, J. Alloy. Compd. 742 (2018) 504–511.

    Article  Google Scholar 

  10. H.S. Chen, Iron Steel Vanadium Titanium 12 (1992) No. 6, 1–9.

    Google Scholar 

  11. H.Y. Li, K. Wang, W.H. Hua, Z. Yang, W. Zhou, B. Xie, Hydrometallurgy 160 (2016) 18–25.

    Article  Google Scholar 

  12. J.Y. Xiang, Q.Y. Huang, X.W. Lv, C.G. Bai, Metall. Mater. Trans. B 48 (2017) 2759–2767.

    Article  Google Scholar 

  13. Y.L. Ji, S.B. Shen, J.H. Liu, S.Y. Yan, Z.T. Zhang, ACS Sustainable Chem. Eng. 5 (2017) 6008–6015.

    Article  Google Scholar 

  14. W.C. Song, H. Li, F.X. Zhu, K. Li, Q. Zheng, Trans. Nonferrous Met. Soc. China 24 (2014) 2687–2694.

    Article  Google Scholar 

  15. B. Liu, H. Du, S.N. Wang, Y. Zhang, S.L. Zheng, L.J. Li, D.H. Chen, AIChE J. 59 (2013) 541–552.

    Article  Google Scholar 

  16. Z.H. Wang, S.L. Zheng, S.N. Wang, Y.L. Qin, H. Du, Y. Zhang, Hydrometallurgy 151 (2015) 51–55.

    Article  Google Scholar 

  17. H.Y. Gao, T. Jiang, Y.Z. Xu, J. Wen, X.X. Xue, Min. Proc. Extract. Metall. Rev. 41 (2020) 22–31.

    Article  Google Scholar 

  18. B. Chen, S. Bao, Y. Zhang, S. Li, Sep. Purif. Technol. 240 (2020) 116624.

    Article  Google Scholar 

  19. J.H. Zhang, W. Zhang, L. Zhang, S.Q. Gu, Int. J. Miner. Process. 138 (2015) 20–29.

    Article  Google Scholar 

  20. C.K. Gupta, N. Krishnamurthy, Extractive metallurgy of vanadium, Elsevier Science Publishers, Amsterdam, The Netherlands, 1992.

    Google Scholar 

  21. J.X. Liu, L.J. Li, S.L. Zheng, S.N. Wang, H. Du, H.Y. Xie, Chin. J. Process Eng. 14 (2014) 763–769.

    Google Scholar 

  22. S.M.J. Mirazimi, F. Rashchi, M. Saba, Sep. Purif. Technol. 116 (2013) 175–183.

    Article  Google Scholar 

  23. J. Wen, T. Jiang, M. Zhou, H.Y. Gao, J.Y. Liu, X.X. Xue, Int. J. Miner. Metall. Mater. 25 (2018) 515–526.

    Article  Google Scholar 

  24. X.L. Lu, Z.B. Fu, W.Y. He, B. Shen, D.F. Yin, C.Q. Wang, Iron Steel Vanadium Titanium 35 (2014) No. 4, 14–19.

    Google Scholar 

  25. T. Jiang, J. Wen, M. Zhou, X. Xue, J. Alloy. Compd. 742 (2018) 402–412.

    Article  Google Scholar 

  26. H. Peng, J. Guo, X.G. Zheng, Z.H. Liu, C.Y. Tao, J. Environ. Chem. Eng. 6 (2018) 5119–5124.

    Article  Google Scholar 

  27. Q.Y. Huang, J.Y. Xiang, X. Wang, G.S. Pei, X.W. Lv, J. Chem. Technol. Biotechnol. 95 (2020) 17731780.

    Article  Google Scholar 

  28. Z. Cao, N. Wang, W. Xie, Z. Qiao, I.H. Jung, Calphad 56 (2017) 72–79.

    Article  Google Scholar 

  29. J.Y. Xiang, Q.Y. Huang, X.W. Lv, C.G. Bai, Can. Metall. Q. 56 (2017) 18–29.

    Article  Google Scholar 

  30. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.St.C. Smart, Appl. Surf. Sci. 257 (2011) 2717–2730.

    Article  Google Scholar 

  31. E.S. Ilton, J.E. Post, P.J. Heaney, F.T. Ling, S.N. Kerisit, Appl. Surf. Sci. 366 (2016) 475–485.

    Article  Google Scholar 

  32. H. Peng, Z.H. Liu, C.Y. Tao, China's Manganese Industry 35 (2017) No. 5, 103–107.

    Google Scholar 

  33. Y. Peng, T. Xie, Z. Zhou, P. Pan, C. Sun, Ferro-alloys 32 (2007) No. 4, 24–28.

    Google Scholar 

  34. Q.Q Weng, W. Zhang, Multipurpose Utilization of Mineral Resources 3 (2012) 59–61.

    Google Scholar 

  35. E. Kim, J. Spooren, K. Broos, L. Horckmans, M. Quaghebeur, K.C. Vrancken, Hydrometallurgy 158 (2015) 139–148.

    Article  Google Scholar 

  36. Z. Yang, H.Y. Li, X.C. Yin, Z.M. Yan, X.M. Yan, B. Xie, Int. J. Miner. Process. 133 (2014) 105–111.

    Article  Google Scholar 

  37. J.G. Speight, Lange's handbook of chemistry (16th Ed.), McGraw-Hill, New York, USA, 2005.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52004044), the Natural Science Foundation of Chongqing (Nos. cstb2022nscq-msx0801 and cstc2019jcyjjqX0024), the Foundation of Chongqing University of Science and Technology (No. ckrc2022030), the Graduate Research Innovation Project of Chongqing University of Science and Technology (No. YKJCX2220216), the Science and Technology Innovation Training Program of Chongqing University of Science and Technology (No. 2022046), and the College Students' innovation and entrepreneurship training program of Chongqing University of Science and Technology (No. 2022007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-yi Xiang or Xue-wei Lv.

Ethics declarations

Conflict of interest

The authors declare that there is on conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Jy., Luo, Ms., Lu, X. et al. Recovery of vanadium from vanadium slag by composite additive roasting–acid leaching process. J. Iron Steel Res. Int. 30, 1426–1439 (2023). https://doi.org/10.1007/s42243-023-01006-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01006-3

Keywords

Navigation