Skip to main content
Log in

Reaction Mechanism of Calcium Vanadate Formation in V-slag/CaO Diffusion System

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Previously, we found that the inward diffusion of oxygen from the atmosphere to the interior of vanadium slag (V-slag) has a significant influence on the roasting reaction and may possibly be the dominant mechanism of this reaction. However, the existing reaction mechanism does not reflect the role of oxygen in calcification roasting. In view of this, the proposed study aims to verify the influence of oxygen using the diffusion couple technology, and propose the reaction equations involving oxygen describing the calcium vanadate formation from the surface to the interior of V-slag. The V-slag/CaO diffusion couples were prepared by vacuum hot-pressing, and diffusion experiments were performed under different oxygen partial pressures at a temperature of 1083 K. First, the surfaces in contact with the atmosphere (S(xz)) during roasting were analyzed by electron probe microanalysis (EPMA), Fourier transform-infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). Then, the diffusion couple was cut along a direction perpendicular to the V-slag/CaO interface and S(xz). The interior surface (S(xy)) was also analyzed by EPMA, FT-IR, and XRD. At S(xz), new phases were clearly observed in the vicinity of V-slag/CaO interface and characterized mainly as CaV2O6, Ca2V2O7, and Ca3V2O8. Moreover, the diffusion thickness of those new phases increased with the oxygen partial pressure. At S(xy), although relatively weak diffraction peaks and absorption bands of CaV2O6, Ca2V2O7, and Ca3V2O8 were detected, no distinct new phases were observed near the V-slag/CaO interface. Considering that the diffusion capacities of Ca and V at S(xz) and S(xy) cannot be evaluated based on the diffusion thickness, the use of interdiffusion coefficient was proposed to quantify the difference among the diffusion capacities. The average interdiffusion coefficients of Ca and V at S(xz) calculated as 1.02 × 10−8 and 0.91 × 10−8 cm2 s−1, respectively, were practically a hundred times these at S(xy). Following the conclusion that the calcium vanadate formation was governed by the inward oxygen diffusion, new reaction equations for describing the formation mechanism of calcium vanadate in calcification roasting were proposed. These equations, derived from the vacancy mechanism, express that the hoses and calcium vanadate are generated by Ca2+, V2O5, and O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

S :

The surface of the diffusion couple

x and X :

Location

C :

Concentration

A :

Area

D :

Interdiffusion coefficient

t :

Time

k :

Slope

References

  1. S. Gustafsson and W. Wang: Int. J. Miner. Process, 1985, vol. 15, pp. 103–15

    Article  CAS  Google Scholar 

  2. B.C. Jena, W. Dresler, and I.G. Reilly: Miner. Eng., 1995, vol. 8, pp. 159–68.

    Article  CAS  Google Scholar 

  3. H.Y. Li, H.X. Fang, K. Wang, W. Zhou, Z. Yang, X.M. Yan, W.S. Ge, Q.W. Li, and B. Xie: Hydrometallurgy, 2015, vol. 156, pp.124–35.

    Article  CAS  Google Scholar 

  4. W.C. Song, K. Li, Q. Zheng, and H. Li: Waste Biomass Valori., 2014, vol. 5, pp.327–32.

    Article  CAS  Google Scholar 

  5. G.B. Sadykhov: Russ. Metall., 2008, vol. 2008, pp.449–58.

    Article  Google Scholar 

  6. Y.L. Ji, S.B. Shen, J.H. Liu, and Y. Xue: J. Clean. Prod., 2017, vol. 149, pp. 1068–78.

    Article  CAS  Google Scholar 

  7. [W. Zhou, B. Xie, W.F. Tan, J. Diao, X. Zhang, and H.Y. Li: JOM, 2016, vol. 68, pp. 2520–24.

    Article  CAS  Google Scholar 

  8. H.Y. Li, C.J. Wang, Y.H. Yuan, Y. Guo, J. Diao, B. Xie: J. Clean. Prod., 2020, vol. 260, p. 121091.

    Article  CAS  Google Scholar 

  9. Z. Yang, H.Y. Li, X.C. Yin, Z.M. Yan, X.M. Yan, and B. Xie: Int. J. Miner. Process., 2014, vol. 133, pp. 105–11.

    Article  CAS  Google Scholar 

  10. P. Cao: Iron Steel Vanadium Titanium, 2012, vol. 3(a), pp. 30–34.

  11. J.H. Zhang, W. Zhang, L. Zhang, and S.Q. Gu: Int. J. Miner. Process., 2015, vol. 138, pp. 20–29.

    Article  CAS  Google Scholar 

  12. M. Li, B. Liu, S.L. Zheng, S.N. Wang, H. Du, D.B. Dreisinger, and Y. Zhang: J. Clean. Prod., 2017, vol. 149, pp. 206–17.

    Article  CAS  Google Scholar 

  13. L.Y. Liu, T. Du, W.J. Tan, X.P. Zhang, and F. Yang: Int. J. Miner. Metall. Mater., 2016, vol. 23(2), pp. 156–60.

    Article  CAS  Google Scholar 

  14. B. Liu, L.P. Meng, S.L. Zheng, M. Li, S.N. Wang: Physicochem. Probl. MI., 2017, vol. 54, pp. 657–67.

    Google Scholar 

  15. H.R. Yue and X.X. Xue: J. Hazard. Mater., 2020, vol. 393, p. 122368.

    Article  CAS  Google Scholar 

  16. R. Sarkar, B.P. Nash, and H.Y. Sohn (2020) Ceram. Int., 46(6), pp. 7204–17.

    Article  CAS  Google Scholar 

  17. S. Mackwell, M. Bystricky, and C. Sproni: Phys. Chem. Miner., 2005, vol. 32, pp. 418–25.

    Article  CAS  Google Scholar 

  18. B. Wierzba and W. Skibiński: J. Alloy. Compd., 2016, vol. 687, pp. 104–08.

    Article  CAS  Google Scholar 

  19. C. Heiligers, C.J. Pretorius, and J.H. Neethling: Int. J. Refract. Met. H., 2012, vol. 31, pp. 51–55.

    Article  CAS  Google Scholar 

  20. H. Fukuyama, K. Hossain, and K. Nagata: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 257–64.

    Article  CAS  Google Scholar 

  21. T. Jiang, J. Wen, M. Zhou, XX Xue (2018) J. Alloys. Compd., 742, 402–12.

    Article  CAS  Google Scholar 

  22. N.Y. Mostafa, E.A. Kishar, and S.A. Abo-El-Enein: J. Alloys Compd., 2009, vol. 473, pp. 538–42.

    Article  CAS  Google Scholar 

  23. H. Ye, X. Liu, and H. Hong: J. Mater. Sci.: Mater. Med., 2009, vol. 20, pp. 843–50.

    CAS  Google Scholar 

  24. L. Chen, Y. Kaneko, N. Ayuzawa, and T. Suzuki: J. Ion Exchange, 1999, vol. 10, pp. 2–7.

    Article  CAS  Google Scholar 

  25. V.B. Taxak, S. Dayawati, and S.P. Khatkar: Curr. Appl. Phys., 2013, vol. 13, pp. 594–98.

    Article  Google Scholar 

  26. P. Parhi, V. Manivannan, S. Kohli, and P. Mccurdy: Bull. Mater. Sci., 2008, vol. 31, pp. 885–90.

    Article  CAS  Google Scholar 

  27. G. Bakradze, L.P.H. Jeurgens, T. Acarturk, U. Starke, and E.J. Mittemeijer: Acta Mater., 2011, vol. 59, pp. 7498-7507.

    Article  CAS  Google Scholar 

  28. JH Zhang, W Zhang, ZL Xue (2017) Min. Proc. Ext. Met. Rev., 38, 256-73.

    Google Scholar 

  29. [29] H.R. Yue and X.X. Xue: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2358–70.

    Article  Google Scholar 

  30. X.S Li, B. Xie, G.E. Wang, X.H Li (2011) Trans. Nonferrous Met. Soc. China 1, 1860–67.

    Article  Google Scholar 

  31. X.Z. Gong, B. Zhang, Z. Wang, and Z.C. Guo: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2050–56.

    Article  Google Scholar 

  32. K.N. Goswami and A. Mottura: Mat. Sci. Eng. A-Struct., 2019, vol. 743, pp. 256–73.

    Article  Google Scholar 

  33. [33] Z.P. Lin, L.L. Bai, X. Zhang, H.F. Dong, and F.G. Wu: J. Magn. Magn. Mater., 2018, vol. 468, pp. 164–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (Grant Nos. 51674084 and U1502273) and the Fundamental Research Funds for the Central Universities (Grant No. 182503035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Xin Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 17, 2020; accepted December 20, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, HR., Xue, XX. & Zhang, WJ. Reaction Mechanism of Calcium Vanadate Formation in V-slag/CaO Diffusion System. Metall Mater Trans B 52, 944–955 (2021). https://doi.org/10.1007/s11663-021-02067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02067-z

Navigation