Skip to main content
Log in

Nonisothermal Crystallization, Growth, and Shape Control of Magnetite Crystals in Molten Nickel Slag During Continuous Cooling

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Efficient recovery of valuable metals from metallurgical slag has attracted an increasing amount of attention in recent years. In this paper, iron from nickel slag was recycled efficiently via a molten oxidation method. Nonisothermal crystallization of oxidized molten nickel slag and the growth of magnetite crystals were observed in situ by high-temperature confocal laser scanning microscopy (HT-CLSM). The growth and shape-control mechanism of magnetite crystals were also analyzed. The results show that the initial crystallization temperature of magnetite crystals in the melt was approximately 1450 °C, and the stable growth temperature ranged from 1400 °C to 1200 °C. The average growth rate of the crystals ranged from 0.013 to 0.141 μm/s at cooling rates of 5 to 50 °C/min. The magnetite crystals formed in the molten slag exhibit granular and dendritic morphologies. Stirring in the melt favors the formation of granular crystals with octahedral structures and depresses dendrite growth. The crystallization dynamics of magnetite crystals in molten slag is dominated by diffusion control, and the crystallization changed from three-dimensional growth to low-dimensional growth with the decrease of crystallization temperature. The apparent crystallization activation energy is in the range of − 581.98 ± 46.86 to − 339.36 ± 34.01 kJ/mol at a cooling rate of 5 to 50 °C/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.M. Li, M. Shen, C. Wang, Y.R. Cui, and J.X. Zhao: Mater. Rep. A., 2017, vol. 31, pp. 100–005. https://doi.org/10.11896/j.issn.1005-023X.2017.05.016.

    Article  Google Scholar 

  2. G.H. Wang, Y.R. Cui, J. Yang, X.M. Li, S.F. Yang, J.X. Zhao, and H.L. Tang: Metall. Mater. Trans. B., 2021, vol. 52, pp. 1463–71.

    Article  CAS  Google Scholar 

  3. W.L. Wang, S.F. Dai, L.J. Zhou, T.S. Zhang, W.G. Tian, and J.L. Xu: Ceram. Int., 2020, vol. 46, pp. 13460–65.

    Article  CAS  Google Scholar 

  4. C.S. Zhang, X. Wang, H.J. Zhu, Q.S. Wu, Z.C. Hu, Z.Z. Feng, and Z. Jia: Ceram. Int., 2020, vol. 46, pp. 23623–28.

    Article  CAS  Google Scholar 

  5. Q. Wu, Y. Wu, W. Tong, and H. Ma: Constr. Build. Mater., 2018, vol. 193, pp. 426–34.

    Article  CAS  Google Scholar 

  6. K.Q. Li, L. Feng, and S.J. Gao: Chin. J. Eng., 2015, vol. 37, pp. 1–6. https://doi.org/10.13374/j.issn2095-9389.2015.01.001.

    Article  CAS  Google Scholar 

  7. W. Ni, Y. Jia, F. Zheng, Z.J. Wang, and M.J. Zheng: J. Univ. Sci. Technol. Beijing., 2010, vol. 32, pp. 975–80.

    CAS  Google Scholar 

  8. Y.B. Ma, X.Y. Du, Y.Y Shen, G.Z. Li, M. Li (2017) Metals 7:321-332

  9. Y.B. Ma and X.Y. Du: Int. J. Mater. Res., 2020, vol. 111, pp. 290–96.

    Article  CAS  Google Scholar 

  10. X.M. Li, Y. Li, X.Y. Zhang, Z.Y. Wen, and X.D. Xing: Metall. Mater. Trans. B., 2020, vol. 52, pp. 925–36.

    Article  CAS  Google Scholar 

  11. J. Pan, G.L. Zheng, D.Q. Zhu, and X.L. Zhou: T. Nonferr. Metal. Soc., 2013, vol. 23, pp. 3421–27.

    Article  CAS  Google Scholar 

  12. Y.B. Ma and X.Y. Du: Russ. J. Non-Ferr. Met., 2020, vol. 61, pp. 1–8.

    Article  Google Scholar 

  13. Y.Y. Shen, Z.N. Huang, Y.Y. Zhang, J.K. Zhong, W.J. Zhang, Y. Yang, M. Chen, and X.Y. Du: Mater. Trans., 2018, vol. 59, pp. 1659–64.

    Article  CAS  Google Scholar 

  14. B. Li, T.L. Rong, X.Y. Du, Y.Y. Shen, and Y.Q. Shen: Ceram. Int., 2021, vol. 47, pp. 18848–57.

    Article  CAS  Google Scholar 

  15. H.Y. Tian, Z.Q. Guo, J. Pan, D.Q. Zhu, C.C. Yang, Y.X. Xue, S.W. Li, and D.Z. Wang: Resour. Conserv. Recy., 2021, https://doi.org/10.1016/j.resconrec.2020.105366.

    Article  Google Scholar 

  16. Z.Q. Guo, D.Q. Zhu, J. Pan, T.J. Wu, and F. Zhang: Metals., 2016, https://doi.org/10.3390/met6040086.

    Article  Google Scholar 

  17. H.Y. Cao, J.M. Wang, L. Zhang, and Z.T. Sui: Procedia Environ. Sci., 2012, vol. 16, pp. 740–48.

    Article  CAS  Google Scholar 

  18. B. Ding, X. Zhu, H. Wang, X.Y. He, and Y. Tan: Int. J. Heat. Mass. Tran., 2018, vol. 118, pp. 471–79.

    Article  Google Scholar 

  19. Z.J. Wang and I. Sohn: Jom., 2018, vol. 70, pp. 1210–19.

    Article  CAS  Google Scholar 

  20. R. Sarkar and Z.S. Li: Metall. Mater. Trans. B., 2021, vol. 52, pp. 1357–78.

    Article  CAS  Google Scholar 

  21. W.L. Wang, J.Y. Chen, J. Yu, L.J. Zhou, S.F. Dai, and W.G. Tian: Waste Manage., 2020, vol. 111, pp. 34–40.

    Article  CAS  Google Scholar 

  22. A. Semykina, J. Nakano, S. Sridhar, V. Shatokha, and S. Seetharaman: Metall. Mater. Trans. B., 2011, vol. 42, pp. 471–76.

    Article  CAS  Google Scholar 

  23. A. Semykina, J. Nakano, S. Sridhar, V. Shatokha, and S. Seetharaman: Metall. Mater. Trans. B., 2010, vol. 41, pp. 940–45.

    Article  CAS  Google Scholar 

  24. A.A. Francis: J. Am. Ceram. Soc., 2005, vol. 88, pp. 1859–63.

    Article  CAS  Google Scholar 

  25. L. Gan, C.X. Zhang, J.C. Zhou, and F.Q. Shangguan: J. Non-Cryst. Solids., 2012, vol. 358, pp. 20–24.

    Article  CAS  Google Scholar 

  26. T.L. Tian, Y.Z. Zhang, Y. Long, and Z.Q. Zhang: T. Mater. Heat Treat., 2016, vol. 37, pp. 237–40. https://doi.org/10.13289/j.issn.1009-6264.2016.01.042.

    Article  CAS  Google Scholar 

  27. W. Zhang, L. Zhang, J.H. Zhang, and N.X. Feng: Ind. Eng. Chem. Res., 2012, vol. 51, pp. 12294–98.

    Google Scholar 

  28. Y. Fan, E. Shibata, A. Iizuka, and T. Nakamura: Metall. Mater. Trans. B., 2015, vol. 46, pp. 2158–64.

    Article  CAS  Google Scholar 

  29. Y. Fan, E. Shibata, A. Iizuka, and T. Nakamura: Mater. Trans., 2014, vol. 55, pp. 958–63.

    Article  CAS  Google Scholar 

  30. Y.Y. Shen, M. Chen, Y.Y. Zhang, X.Q. Xu, G.Z. Li, and X.Y. Du: Steel Res. Int., 2017, https://doi.org/10.1002/srin.201700300.

    Article  Google Scholar 

  31. X.Z. Wang, Z.B. Zhao, J.Y. Qu, Z.Y. Wang, and J.S. Qiu: Cryst. Growth. Des., 2010, vol. 10, pp. 2863–69.

    Article  CAS  Google Scholar 

  32. G.H. Gao, X.H. Liu, R.R. Shi, K.C. Zhou, Y.G. Shi, R.Z. Ma, E.T. Muromachi, and G.Z. Qiu: Cryst. Growth Des., 2010, vol. 10, pp. 2888–94.

    Article  CAS  Google Scholar 

  33. R.Z. Hu, Z.Q. Yang, and Y.J. Ling: Thermochim. Acta., 1988, vol. 123, pp. 135–51.

    Article  Google Scholar 

  34. V. Erukhimovitch and J. Baram: Metall. Mater. Trans. A., 1997, vol. 28, pp. 2763–64.

    Article  Google Scholar 

  35. Y.B. Ma and X.Y. Du: Metals., 2018, https://doi.org/10.3390/met8110956.

    Article  Google Scholar 

  36. W. Pabst, E. Gregorová, and T. Uhlířová: Mater. Charact., 2015, vol. 105, pp. 1–12.

    Article  CAS  Google Scholar 

  37. Y.H. Wu, J. Chang, W.L. Wang, L. Hu, S.J. Yang, and B. Wei: Acta Mater., 2017, vol. 129, pp. 366–77.

    Article  CAS  Google Scholar 

  38. T.M. Yeo and J.W. Cho: Metall. Mater. Trans. B., 2021, vol. 52, pp. 2186–93.

    Article  CAS  Google Scholar 

  39. J.J.M. Lenders, C.L. Altan, P.H.H. Bomans, A. Arakaki, S. Bucak, G.D. With, and N.A. Sommerdijk: Cryst. Growth Des., 2014, vol. 14, pp. 5561–68.

    Article  CAS  Google Scholar 

  40. Z.Y. Chang, Y.J. Wu, N. Su, Q.C. Deng, Q.Y. Wu, Y.T. Xue, and L.M. Peng: Mater. Charact., 2021, https://doi.org/10.1016/j.matchar.2020.110831.

    Article  Google Scholar 

  41. J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, and P. Wollants: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1961–72.

    Article  CAS  Google Scholar 

  42. J.H. Park, J.G. Park, D.J. Min, Y.E. Lee, and Y.B. Kang: J. Eur. Ceram. Soc., 2010, vol. 30, pp. 3181–86.

    Article  CAS  Google Scholar 

  43. I. Steinbach: Acta Mater., 2008, vol. 56, pp. 4965–71.

    Article  CAS  Google Scholar 

  44. J.L. Du, A. Zhang, Z.P. Guo, M.H. Yang, M. Li, F. Liu, and S.M. Xiong: Acta Mater., 2018, vol. 161, pp. 35–46.

    Article  CAS  Google Scholar 

  45. C. Yang, J.J. Wu, and Y.L. Hou: Chem. Commun., 2011, vol. 47, pp. 5130–41.

    Article  CAS  Google Scholar 

  46. B.H. Bateer, C.G. Tian, Y. Qu, S.C. Du, T.X. Tan, R.H. Wang, G.H. Tian, and H.G. Fu: CrystEngComm., 2013, vol. 15, pp. 3366–71.

    Article  CAS  Google Scholar 

  47. H.P. Qi, Q.W. Chen, M.S. Wang, M.H. Wen, and J. Xiong: J. Phys. Chem. C., 2009, vol. 113, pp. 17301–05.

    Article  CAS  Google Scholar 

  48. W.L. Wang, S.F. Dai, L.J. Zhou, J.K. Zhang, W.G. Tian, and J.L. Xu: Ceram. Int., 2020, vol. 46, pp. 3631–36. https://doi.org/10.1016/j.ceramint.2019.10.082.

    Article  CAS  Google Scholar 

  49. R.Z. Xu, J.L. Zhang, K.X. Jiao, and Y.X. Liu: Metall. Res. Technol., 2018, https://doi.org/10.1051/metal/2018008.

    Article  Google Scholar 

  50. L.J. Zhou and W.L. Wang: Metall. Mater. Trans. B., 2016, vol. 47, pp. 1548–52. https://doi.org/10.1007/s11663-016-0651-8.

    Article  CAS  Google Scholar 

  51. L.Z. Wang, J.Q. Li, S.F. Yang, C.Y. Chen, H.X. Jin, and X. Li: Sci. Rep-UK., 2018, https://doi.org/10.1038/s41598-018-19639-w.

    Article  Google Scholar 

  52. J. Vázquez, G.G. Barreda, J.L. Cárdenas, P.L. López, P. Villares, and R. Jiménez: Thermochim. Acta., 2008, vol. 403, pp. 3957–63.

    Google Scholar 

  53. G. Lei, C. Lai, and H. Xiong: High Temp. Mat. PR-ISR., 2016, vol. 35, pp. 261–67.

    Article  CAS  Google Scholar 

  54. T. Xu, Z.Y. Jian, L.C. Zhuo, L.L. Zhang, F.G. Chang, M. Zhu, Y.Q. Liu, and Z.Q. Jie: Thermochim. Acta., 2020, https://doi.org/10.1016/j.tca.2020.178858.

    Article  Google Scholar 

  55. K. Matusita, T. Komatsu, and R. Yokota: J. Mater. Sci., 1984, vol. 19, pp. 291–96.

    Article  CAS  Google Scholar 

  56. T. Bruijn, W. Jong, and P. Berg: Thermochim. Acta., 1981, vol. 45, pp. 315–25.

    Article  Google Scholar 

  57. L. Wu, X.G. Jiang, G.J. Lv, X.D. Li, and J.H. Yan: Waste Manag., 2020, vol. 102, pp. 270–80.

    Article  CAS  Google Scholar 

  58. L.J. Zhou, H. Li, W.L. Wang, Z.Y. Wu, J. Yu, and S.L. Xie: Metall. Mater. Trans. B., 2017, vol. 48, pp. 2949–60.

    Article  CAS  Google Scholar 

  59. L.J. Zhou, W.L. Wang, F.J. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B., 2012, vol. 43, pp. 354–62.

    Article  CAS  Google Scholar 

  60. J.P. Jose, L. Chazeau, J.Y. Cavaillé, K.T. Varughese, and S. Thomas: RSC Adv., 2014, vol. 4, pp. 31643–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China [No. 51904139], the Science and Technology Major Project Plan of Gansu Province [No. 19ZD2GD001], and the Natural Science Foundation of Gansu Province [No. 21JR7RA222] for supporting this work.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyan Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 449 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Du, X., Shen, Y. et al. Nonisothermal Crystallization, Growth, and Shape Control of Magnetite Crystals in Molten Nickel Slag During Continuous Cooling. Metall Mater Trans B 53, 1816–1826 (2022). https://doi.org/10.1007/s11663-022-02491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02491-9

Navigation