Skip to main content
Log in

Effect of Annealing Atmosphere and Steel Alloy Composition on Oxide Formation and Radiative Properties of Advanced High-Strength Steel Strip

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This study elucidates the effect of alloy composition, annealing atmosphere, and pre-annealed surface state on the radiative properties of dual-phase (DP) steels. Twelve samples of varying alloy composition and pre-annealed surface roughness were heated in a 95 pct/5 pct (vol) N2/H2 process atmosphere under dew points of + 10 °C and − 30 °C. The surface profile and surface topography were characterized using scanning electron microscopy and optical profilometry, while radiative properties were measured using a UV–Vis–NIR spectrophotometer and a Fourier transform infrared spectrometer. The surface oxide speciation and thickness were determined using X-ray photoelectron spectroscopy and focused ion beam milling, respectively. The results showed that smooth oxidized surfaces with lower Si/Mn mass ratios give rise to prominent interference effects observed in the measured reflectance. The thin-film interference model accurately predicts measured radiative properties. These findings can be used to improve the industrial pyrometry measurements in the continuous galvanizing line, and, potentially, to evaluate the oxide formation of DP steels during annealing via in-situ optical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. R.G. Thiessen, E. Bocharova, D. Mattissen, and R. Sebald: Metall. Mater. Trans. B., 2010, vol. 41B, pp. 857–63.

    Article  CAS  Google Scholar 

  2. Q. Somveille, P. Mosser, M. Brochu, K.J. Daun, Galvatech 2017, pp. 210–17.

  3. S.H. Ham, C. Carteret, J. Angulo, and G. Fricout: Corros. Sci., 2018, vol. 132, pp. 185–93.

    Article  CAS  Google Scholar 

  4. C. Shi, K.J. Daun, and M.A. Wells: Int. J. Heat Mass Transf., 2015, vol. 91, pp. 818–28.

    Article  CAS  Google Scholar 

  5. R. Brannon and R.J. Goldstein: J. Heat Transf., 1970, vol. 92(2), pp. 257–63.

    Article  CAS  Google Scholar 

  6. R. Khondker, A. Mertens, and J.R. McDermid: Mater. Sci. Eng. A., 2007, vol. 463(1–2), pp. 157–65.

    Article  Google Scholar 

  7. H. Liu, Y. He, S. Swaminathan, M. Rohwerder, and L. Li: Surf. Coat. Technol., 2011, vol. 206(6), pp. 1237–43.

    Article  CAS  Google Scholar 

  8. E. Bellhouse, J.R. McDermid, in: Proc. Materials Science and Technology Conf. and Exhib, 2009, pp. 913–24.

  9. M. Pourmajidian, B. Langelier, and J.R. McDermid: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 5561–73.

    Article  Google Scholar 

  10. F.K. Suleiman, K. Lin, K.J. Daun, J. Quant. Spectrosc. Radiat. Transf., 2021, pp. 107693.

  11. T. Iuchi, T. Furukawa, and S. Wada: Appl. Opt., 2003, vol. 42(13), pp. 2317–26.

    Article  CAS  Google Scholar 

  12. L. de Campo, R.B. Pérez-Sáez, X. Esquisabel, I. Fernández, and M.J. Tello: Rev. Sci. Instrum., 2006, vol. 77(11), p. 113111.

    Article  Google Scholar 

  13. J.R. Howell, M.P. Mengüç, K.J. Daun, and R. Siegel: Thermal Radiation Heat Transfer, CRC Press, Boca Raton, 2020.

    Book  Google Scholar 

  14. K. Lin and K.J. Daun: J. Quant. Spectrosc. Radiat. Transf., 2020, vol. 242, p. 106796.

    Article  CAS  Google Scholar 

  15. K. Lin, F.K. Suleiman, and K.J. Daun: Int. J. Heat Mass Transf., 2021, vol. 176, p. 121429.

    Article  CAS  Google Scholar 

  16. G. Neuer and F. Güntert: Thermochim. Acta., 1988, vol. 133, pp. 299–304.

    Article  CAS  Google Scholar 

  17. M. Kobayashi, M. Otsuki, H. Sakate, F. Sakuma, and A. Ono: Int. J. Thermophys., 1999, vol. 20(1), pp. 289–98.

    Article  CAS  Google Scholar 

  18. L. Del Campo, R.B. Perez-Saez, and M.J. Tello: Corros. Sci., 2008, vol. 50(1), pp. 194–9.

    Article  Google Scholar 

  19. J. King, H. Jo, R. Tirawat, K. Blomstrand, and K. Sridharan: Nucl. Technol., 2017, vol. 200(1), pp. 1–14.

    Article  Google Scholar 

  20. A.E. Morris, G. Geiger, and H.A. Fine: Handbook on Material and Energy Balance Calculations in Material Processing, Wiley, New York, 2012.

    Google Scholar 

  21. G.S. Mousavi and J.R. McDermid: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 5546–60.

    Article  Google Scholar 

  22. G.S. Mousavi, B. Langelier, and J.R. McDermid: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 2898–911.

    Article  Google Scholar 

  23. E. Bellhouse and J.R. McDermid: Mater. Sci. Eng. A., 2008, vol. 491(1–2), pp. 39–46.

    Article  Google Scholar 

  24. E. Bellhouse and J.R. McDermid: Metall. Mater. Trans. A., 2010, vol. 41A, pp. 1539–53.

    Article  CAS  Google Scholar 

  25. E.M. Bellhouse, A. Mertens, and J.R. McDermid: Mater. Sci. Eng. A., 2007, vol. 463(1–2), pp. 147–56.

    Article  Google Scholar 

  26. Y.F. Gong, H.S. Kim, and B.C. De Cooman: ISIJ Int., 2009, vol. 49(4), pp. 557–63.

    Article  CAS  Google Scholar 

  27. L. Cho, S.J. Lee, M.S. Kim, Y.H. Kim, and B.C. De Cooman: Metall. Mater. Trans. A., 2013, vol. 44A, pp. 362–71.

    Article  Google Scholar 

  28. L. Cho, G.S. Jung, and B.C. De Cooman: Metall. Mater. Trans. A., 2014, vol. 45, pp. 5158–72.

    Article  CAS  Google Scholar 

  29. Y. Suzuki, T. Yamashita, Y. Sugimoto, S. Fujita, and S. Yamaguchi: ISIJ Int., 2009, vol. 49(4), pp. 564–73.

    Article  CAS  Google Scholar 

  30. M.C. Rey, D.P. Kramer, W.R. Henderson, L. Abney, Monsanto Research Corp., 1984.

  31. M. Pourmajidian and J.R. McDermid: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 1795–808.

    Article  Google Scholar 

  32. S. Alibeigi, R. Kavitha, R. Meguerian, and J.R. McDermid: Acta Mater., 2011, vol. 59(9), pp. 3537–49.

    Article  CAS  Google Scholar 

  33. J. Oh, L. Cho, M. Kim, K. Kang, and B.C. De Cooman: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 5474–86.

    Article  Google Scholar 

  34. M.Q. Brewster: Thermal Radiative Transfer and Properties, Wiley, New York, 1992.

    Google Scholar 

  35. M. Querry, Optical constants, contractor report, US Army Chemical Research, Development and Engineering Center, 1985, p. 418.

  36. J. Hugel and C. Carabatos: Solid State Commun., 1986, vol. 60(4), pp. 369–72.

    Article  CAS  Google Scholar 

  37. Standard ASTM A1079-17, 2017.

  38. K. Tang, P.A. Kawka, and R.O. Buckius: J. Thermophys. Heat Transf., 1999, vol. 13(2), pp. 169–76.

    Article  CAS  Google Scholar 

  39. Q. Zhu, H. Lee, and Z. Zhang: J. Thermophys. Heat Transf., 2005, vol. 19(4), pp. 548–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council Canada (NSERC CRDPJ-521291-2017 and RGPIN-2019-06535) and the International Zinc Association. The authors would like to thank Dr. Bayindir Zeynel at the Biointerfaces Institute at McMaster University for assistance with the XPS analysis, as well as Dr. Frank Goodwin (IZA), Mr. Christopher Martin-Root (Stelco), Dr. Joyce Niederinghaus (AK Steel), Mr. Michel Dubois (CMI), and Professor Myriam Brochu (Ecole Polytechnique du Montreal) for helpful discussions. The authors would also like to thank Dr. Roohen Tarighat and Dr. Hrilina Ghosh for their help with the ellipsometry measurements, and to Dr. Yuquan Ding for his help with the profilometry measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle J. Daun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 21, 2021; accepted November 1, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, K., Pourmajidian, M., Suleiman, F.K. et al. Effect of Annealing Atmosphere and Steel Alloy Composition on Oxide Formation and Radiative Properties of Advanced High-Strength Steel Strip. Metall Mater Trans B 53, 380–393 (2022). https://doi.org/10.1007/s11663-021-02374-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02374-5

Navigation