Skip to main content
Log in

Effect of Process Atmosphere Dew Point and Tin Addition on Oxide Morphology and Growth for a Medium-Mn Third Generation Advanced Steel During Intercritical Annealing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The combined effects of process atmosphere oxygen partial pressure, annealing time, and a 0.05 wt pct Sn addition on the selective oxidation of a model 0.1C-6Mn-2Si third generation advanced high-strength steel (3G-AHSS) composition were investigated. External and internal oxidation of both steels were observed after intercritical annealing at 963 K (690 °C) for holding times of 60 to 600 seconds under all process atmosphere dew points explored—i.e., 223 K, 243 K, and 278 K (− 50 °C, − 30 °C, and + 5 °C). The external MnO morphology was changed from compact and continuous film-like nodules to a fine and discrete globular morphology, with thinner external oxides, for the Sn-added steel. Cross-sectional TEM analysis revealed that the Sn addition also resulted in significant refinement of the internal oxide network. Kinetic studies showed that both the external and internal oxidation followed a parabolic rate law, where the Sn addition to the steel chemistry resulted in lower external and internal oxidation rates. 3D atom probe tomography of the external oxide/steel interface showed that Sn was segregated to the interface with enrichment levels ten times the bulk value, which was concluded to be responsible for the observed morphological changes. The resultant refined external oxide structure is expected to have significant benefits with respect to reactive wetting by the continuous galvanizing bath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] D.W. Suh and S.J. Kim: Scripta Mater. 2017, vol. 126, pp. 63–7.

    Article  CAS  Google Scholar 

  2. [2] M. J. Merwin: Mater. Sci. Forum, 2007, vol. 539, pp. 4327–32.

    Article  Google Scholar 

  3. [3] M.J. Merwin: Iron & Steel Technol., 2008, vol. 5, pp. 66–84.

    CAS  Google Scholar 

  4. [4] R. L. Miller: Metall. Mater. Trans. B, 1972, vol. 3, pp. 905–12.

    Article  Google Scholar 

  5. K.M.H. Bhadhon, J.R. McDermid, and F.E. Goodwin: The 10th International Conference on Zinc and Zinc Alloy Coated Steel Sheet (Galvatech 2015), 2015, pp. 936–43.

  6. [6] J. Mahieu, S. Claessens, and B.C. De Cooman: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2905–8.

    Article  CAS  Google Scholar 

  7. [7] J. Maki, J. Mahieu, B.C. De Cooman, and S. Claessens: Mater. Sci. Technol., 2003, vol. 19, pp. 125–31.

    Article  CAS  Google Scholar 

  8. [8] J. Mahieu, B.C. De Cooman, J. Maki, and S. Claessens: Iron Steelmaker, 2002, vol. 29, pp. 29–34.

    Article  CAS  Google Scholar 

  9. [9] E.M. Bellhouse, and J.R. McDermid: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2753–68.

    Article  Google Scholar 

  10. [10] E.M. Bellhouse, and J.R. McDermid: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2426–41.

    Article  Google Scholar 

  11. [11] E.M. Bellhouse and J.R. McDermid: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1539–53.

    Article  CAS  Google Scholar 

  12. [12] L. Cho, S.J. Lee, M.S. Kim, Y.H. Kim and B.C. De Cooman: Metall. Mater. Trans. A., 2013, 44A, pp. 362–71.

    Article  Google Scholar 

  13. [13] Y.F. Gong, H.S. Kim and B.C. De Cooman: ISIJ Int., 2009, vol. 49, pp. 557–63.

    Article  CAS  Google Scholar 

  14. [14] Y.F. Gong, H.S. Kim and B.C. De Cooman: ISIJ Int., 2008, vol. 48, pp. 1745–51.

    Article  CAS  Google Scholar 

  15. [15] K.R. Jo, L. Cho, J.H. Oh, M.S. Kim, K.C. Kang and B.C. De Cooman: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3635–41.

    Article  Google Scholar 

  16. [16] M. Blumenau, M. Norden, F. Friedel and K. Peters: Surf. Coat. Technol., 2011, vol. 206, pp. 559–67.

    Article  CAS  Google Scholar 

  17. [17] Y.F. Gong and B.C. De Cooman: ISIJ Int., 2011, vol. 51, pp. 630–7.

    Article  CAS  Google Scholar 

  18. [18] A. Ruck, D. Monceau, and H.J. Grabke: Steel Res., 1996, vol. 67, pp. 240–6.

    Article  CAS  Google Scholar 

  19. [19] G. Lyudkovsky: IEEE Trans. Magn., 1986, vol. 22, pp.508–46.

    Article  Google Scholar 

  20. [20] L.Cho, M.S. Kim, Y.H. Kim and B.C. De Cooman: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4484–98.

    Article  Google Scholar 

  21. [21] L. Cho, E.J. Seo, G.S. Jung, D.W. Suh and B.C. De Cooman: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1705–19.

    Article  Google Scholar 

  22. [22] J. Oh, L. Cho, M. Kim, K. Kang and B.C. De Cooman: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5474–86.

    Article  Google Scholar 

  23. [23] Z.T. Zhang, I.R. Sohn, F.S. Pettit, G.H. Meier and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 567–84.

    Article  CAS  Google Scholar 

  24. [24] Y.Y. Zhang, Y.Y. Zhang, F.H. Yang and Z.T. Zhang: J. Iron. Steel Res. Int., 2013, vol. 20, pp. 39–56.

    Article  CAS  Google Scholar 

  25. [25] E.D. Hondores and M.P. Seah: Int. Met. Rev., 1977, vol. 22, pp. 262–301.

    Google Scholar 

  26. [26] M. Seah: J. Catal, 1979, vol. 57, pp. 450–7.

    Article  CAS  Google Scholar 

  27. [27] D. Melford: Philos. Trans. R. Soc. A, 1980, vol. 295, pp. 89–103.

    Article  CAS  Google Scholar 

  28. [28] D.K. Matlock, J.G. Speer, E. De Moor and P.J. Gibbs: JESTECH, 2012, vol. 15, pp. 1–12.

    Google Scholar 

  29. [29] B.C. De Cooman, P. Gibbs, S. Lee and D.K. Matlock: Metall. Mater. Trans. A, 2015, vol. 44A, pp. 2563–72.

    Google Scholar 

  30. [30] S. Lee, K. Lee and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 46A, pp. 2356–63.

    Google Scholar 

  31. [31] S. Lee and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 45A, pp. 709–16.

    Google Scholar 

  32. [32] R. Khondker, A. Mertens and J.R. McDermid: Mater. Sci. Eng. A, 2007, vol. 463, pp. 157–65.

    Article  Google Scholar 

  33. [33] E.M. Bellhouse and J.R. McDermid: Mater. Sci. Eng. A, 2008, vol. 491, pp. 39–46.

    Article  Google Scholar 

  34. [34] R. Kavitha and J.R. McDermid: Surf. Coat. Technol., 2012, vol. 212, pp. 152–8.

    Article  CAS  Google Scholar 

  35. [35] R. Sagl, A. Jarosik, D. Stifter and G. Angeli: Corros. Sci., 2013, vol. 70, pp. 268–75.

    Article  CAS  Google Scholar 

  36. Morris: FREED Thermodynamic Database, v7.8.1, 2013.

  37. [37] K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly and B. Gorman: Ultramicroscopy, 2007, vol. 107, pp. 131–9.

    Article  CAS  Google Scholar 

  38. [38] B.R. Strohmeier and D.M. Hercules: J. Phys. Chem., 1984, vol. 88, pp. 4922–9.

    Article  CAS  Google Scholar 

  39. [39] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson and R.St.C. Smart: Appl. Surf. Sci., 2011, vol. 257, pp. 2717–30.

    Article  CAS  Google Scholar 

  40. [40] A. Aoki: Jpn. J. Appl. Phys., 1976, vol. 15, pp. 305–11.

    Article  CAS  Google Scholar 

  41. N. Birks, G.H. Meier and F.S. Pettit: Introduction to the High-temperature Oxidation of Metals. 2nd ed., Cambridge University Press: Cambridge, 2006, p. 338.

    Book  Google Scholar 

  42. [42] J.H. Rask, B.A. Miner and P.R. Buseck: Ultramicroscopy, 1987, vol. 21, pp. 321–6.

    Article  CAS  Google Scholar 

  43. P.L. Potapov, K. Jorissen and D. Schryvers: Phys. Rev. B, 2004, vol. 70, pp. 1–10.

    Article  Google Scholar 

  44. [44] H.K. Schmid and W. Mader: Micron, 2006, vol. 37, pp. 426–32.

    Article  CAS  Google Scholar 

  45. [45] H. Tan, J. Verbeeck, A. Abakumov and G. Van Tendeloo: Ultramicroscopy, 2012, vol. 116, pp. 24–33.

    Article  CAS  Google Scholar 

  46. [46] A.P. Grosvenor, E.M. Bellhouse, A. Korinek, M. Bugnet and J.R. McDermid: Appl. Surf. Sci., 2016, vol. 379, pp. 242–8.

    Article  CAS  Google Scholar 

  47. [47] K. Kimoto, T. Sekiguchi and T. Aoyama: J. Electron. Microsc., 1997, vol. 46, pp. 369–74.

    Article  CAS  Google Scholar 

  48. Gatan, http://www.eels.info/atlas/silicon. Accessed 12 June 2017.

  49. [49] E.A. Marquis, B.P. Geiser, T.J. Prosa and D.J. Larson: J. Microsc., 2011, vol. 24, pp. 225–33.

    Article  Google Scholar 

  50. [50] X.S. Li, S.I. Baek, C.S. Oh, S.J. Kim and Y.W. Kim: Scripta Mater., 2007, vol. 57, pp. 113–16.

    Article  CAS  Google Scholar 

  51. [51] Y. Suzuki, T. Yamashita, Y. Sugimoto, S. Fujita and S. Yamaguchi: ISIJ Int., 2009, vol. 49, pp. 564–73.

    Article  CAS  Google Scholar 

  52. [52] D. Huin, P. Flauder and J.B. Leblond: Oxid. Met., 2005, vol. 64, pp. 131–67.

    Article  CAS  Google Scholar 

  53. [53] J. Takada, K. Kashiwagi and M. Adachi: J. Mater. Sci., 1984, vol. 19, pp. 3451–3458.

    Article  CAS  Google Scholar 

  54. [54] H. Liu, W. Shi, Y. He and L. Li: Surf. Interface Anal., 2010, vol. 42, pp. 1685–9.

    Article  CAS  Google Scholar 

  55. [55] M. Auinger, V.G. Praig, B. Linder and H. Danninger: Corros. Sci., 2015, vol. 96, pp. 133–43.

    Article  CAS  Google Scholar 

  56. [56] M. Pourmajidian and J.R. McDermid: Mat. Met. Trans. A, 2018, vol. 49A, pp. 1795–1808.

    Google Scholar 

  57. [57] M. Pourmajidian and J.R. McDermid: ISIJ Int., 2018, https://doi.org/10.2355/isijinternational.isijint-2017-688.

    Article  Google Scholar 

  58. [58] C. Wagner: Zh. Elektrochem, 1959, vol. 63, pp. 772–82.

    CAS  Google Scholar 

  59. [59] S. Alibeigi, R. Kavitha, R.J. Meguerian and J.R. McDermid: Acta. Mater., 2011, vol. 59, pp. 3537–49.

    Article  CAS  Google Scholar 

  60. [60] R. Sagl, A. Jarosik, G. Angeli, T. Haunschmid, G. Hesser and D. Stifter: Acta Mater., 2014, vol. 72, pp. 192–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Stelco Inc. through the NSERC/Stelco Industrial Research Chair in Advanced Coated Steels (Grant IRCPJ 305921-12). U.S. Steel Research is gratefully acknowledged for their provision of the steels used in this study. The authors would like to thank John Thomson and Ray Fullerton of the McMaster Steel Research Centre for their technical support with the galvanizing simulations, Travis Casagrande and Dr. Andreas Korinek of the Canadian Centre for Electron Microscopy (CCEM) for technical and scientific assistance with FIB work and electron energy loss spectroscopy, and Dr. Li Sun at ArcelorMittal Dofasco for aiding with the XPS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. McDermid.

Additional information

Manuscript submitted February 1, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmajidian, M., Langelier, B. & McDermid, J.R. Effect of Process Atmosphere Dew Point and Tin Addition on Oxide Morphology and Growth for a Medium-Mn Third Generation Advanced Steel During Intercritical Annealing. Metall Mater Trans A 49, 5561–5573 (2018). https://doi.org/10.1007/s11661-018-4855-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4855-1

Navigation