Skip to main content
Log in

Formation Mechanism of Abnormal Martensite in the Welded Joint of the Bainitic Rail

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This investigation aims to explore the formation mechanism of abnormal martensite in the bainitic rail welding process by combining numerical simulation and physical experiment. For this purpose, the continuous cooling transformation (CCT) diagram of bainitic steel was measured to determine the transformation temperature and cooling rate range of bainite and martensite during phase transformation. Besides, the Eulerian multiphase solidification model was also used to accurately design the experimental plan of the thermosimulated test. The higher cooling rate and microsegregation of the welded joint are important factors affecting the formation of abnormal martensite. The effects of cooling rate and microsegregation on the microstructure during the welding process of the bainitic rail were examined against the martensite fraction and bainite fraction. When the cooling rate is greater than or equal to 1 K/s, abnormal martensite will appear in bainite after the thermosimulated test, regardless of whether there is microsegregation in the sample. The cooling rate, not the microsegregation, is the main factor promoting the formation of abnormal martensite. The reasonable postwelding treatment process has excellent potential for improving the mechanical properties of the welded joint of the bainitic rail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

ρ l, ρ e, ρ c :

Density, kg/m3

f l, f e, f c :

Volume fraction

f ie , f ic :

Volume fraction of interdendritic melt phase

t :

Time, s

\( \vec{v}_{l} \), \( \vec{v}_{e} \), \( \vec{v}_{c} \) :

Velocity vector, m/s

S le :

The liquid-equiaxed net mass transfer rate, kg/s/m3

S lc :

The liquid-columnar net mass transfer rate, kg/s/m3

S ce :

Columnar-equiaxed net mass transfer rate, kg/s/m3

S sc , S se :

Interdendritic net mass transfer rate, kg/s/m3

P:

Pressure, Pa

μ l :

Viscosity, kg/m/s

μ t,k :

Turbulent viscosity, kg/m/s

\( \vec{F}_{T}^{l} \), \( \vec{F}_{T}^{e} \) :

Stress–strain tensors caused by thermal buoyancy, kg/m/s2

\( \vec{F}_{C}^{l} \), \( \vec{F}_{C}^{e} \) :

Stress–strain tensors caused by solutal buoyancy, kg/m/s2

\( \vec{F}_{u} \) :

Discriminatory function

\( \vec{V}_{cl} \) :

The liquid-columnar momentum exchange rate, kg/m2/s2

\( \vec{V}_{ce} \) :

The columnar-equiaxed momentum exchange rate, kg/m2/s2

\( \vec{V}_{el} \) :

The liquid-equiaxed momentum exchange rate, kg/m2/s2

H l, H e, H c :

Enthalpy, J/kg

k * :

Effective thermal conductivity, W/m/K

T l, T e, T c :

Temperature, K

H :

Phase transition enthalpy, J/kg

H * :

Diffusional heat exchange coefficient

c l, c e, c c :

Solute concentration

c ie , c ic :

The solute concentration of interdendritic melt phase

C Ple , C Plc , C Pce , C sPc , C sPe :

Solute transfer rates with respect to phase change, kg/m3/s

C Dle , C Dlc , C Dce , C sDc , C sDe :

Solute transfer rates with respect to diffusion, kg/m3/s

c 0 :

Initial concentration

c mix :

Concentration of the liquid-columnar-equiaxed mixture

\( \Delta T \) :

Undercooling, K

l :

Columnar dendrite length, m

a 1, a 2 :

Fitting coefficient

n e :

Nucleation density of the equiaxed crystal, m−3

n max :

Maximum nucleation density of the equiaxed crystal, m−3

T σ :

Standard deviation, K

T N :

Average nucleation undercooling, K

l :

Mark liquid

c :

Columnar dendrite

e :

Equiaxed crystal

References

  1. Z. Shao, Z. Ma, J. Sheu, and H.O. Gao: Transport. Res. E-Log., 2018, vol. 117, pp. 40–57.

    Article  Google Scholar 

  2. D.T. Eadie, D. Elvidge, K. Oldknow, R. Stock, P. Pointner, J. Kalousek, and P. Klauser: Wear, 2008, vol. 265, pp. 1222–30.

    Article  CAS  Google Scholar 

  3. H.K.D.H. Bhadeshia and J. Vijay: Patent No. WO 96/22396, July 25, 1996.

  4. Y. Satoh, M. Tatsumi, K. Kasiwaya, M. Ueda, and H. Yokoyama: Q. Rep. Railw. Tech. Res. Inst., 1999, vol. 40, pp. 86–91.

    Google Scholar 

  5. V.V. Pavlov, L.A. Godik, L.V. Korneva, N.A. Kozyrev, and E.P. Kuznetsov: Metallurgist, 2007, vol. 51, pp. 209–12.

    Article  CAS  Google Scholar 

  6. S. Parzych and J. Krawczyk: Arch. Metall. Mater., 2012, vol. 57, pp. 261–64.

    Article  CAS  Google Scholar 

  7. P. Clayton and N. Jin: Wear, 1996, vol. 200, pp. 74–82.

    Article  CAS  Google Scholar 

  8. Pettersen: U.S. Patent No. 6899261B2, May 31, 2005.

  9. L. Hou, Y. Dai, Y. Fautrelle, Z. Li, Z. Ren, C. Esling, and X. Li: Scripta Mater., 2018, vol. 156, pp. 95–100.

    Article  CAS  Google Scholar 

  10. P.M. Ossi: Z. Phys. B, 1985, vol. 62, pp. 71–77.

    Article  CAS  Google Scholar 

  11. T.F. Majka, D.K. Matlock, and G. Krauss: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1627–37.

    Article  CAS  Google Scholar 

  12. T. Sourmail and V. Smanio: Mater. Sci. Technol., 2013, vol. 29, pp. 883–88.

    Article  CAS  Google Scholar 

  13. W. Maziarz, P. Czaja, M.J. Szczerba, L. Lityńska-Dobrzyńska, T. Czeppe, and J. Dutkiewicz: J. Alloys Compd., 2014, vol. 615, pp. 173–77.

    Article  Google Scholar 

  14. W. Ding, L. Li, G. Zhao, H. Song, and X. Zhang: Hot Work. Technol., 2015, vol. 44, pp. 209–12.

    Google Scholar 

  15. S.R. Babu, D. Ivanov, and D. Porter: ISIJ Int., 2019, vol. 59, pp. 169–75.

    Article  Google Scholar 

  16. D.A. Mirzaev, M.M. Shtejnberg, T.N. Ponomareaa, and V.M. Schastlivtsev: Fiz. Met. Metalloved., 1979, vol. 47, pp. 125–35.

    CAS  Google Scholar 

  17. L. Cui, H. Fujii, N. Tsuji, and K. Nogi: Scripta Mater., 2007, vol. 56, pp. 637–40.

    Article  CAS  Google Scholar 

  18. S.M.C. Van Bohemen and J. Sietsma: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6672–76.

    Article  Google Scholar 

  19. M. Nikravesh, M. Naderi, and G.H. Akbari: Mater. Sci. Eng. A, 2012, vol. 540, pp. 24–29.

    Article  CAS  Google Scholar 

  20. B.S. Taysom and C.D. Sorensen: Int. J. Mach. Tool. Manu., 2020, vol. 150, p. 103512.

    Article  Google Scholar 

  21. R. Guan, C. Ji, and M. Zhu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1137–53.

    Article  Google Scholar 

  22. R. Guan, C. Ji, C. Wu, and M. Zhu: Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 503–16.

    Article  CAS  Google Scholar 

  23. M.C. Schneider and C. Beckermann: ISIJ Int., 1995, vol. 35, pp. 665–72.

    Article  CAS  Google Scholar 

  24. S. Nabeshima, H. Nakato, T. Fujii, T. Fujimura, K. Kushida, and H. Mizota: ISIJ Int., 1995, vol. 35, pp. 673–79.

    Article  CAS  Google Scholar 

  25. C. Celada-Casero, J. Sietsma, and M.J. Santofimia: Mater. Des., 2019, vol. 167, p. 107625.

    Article  CAS  Google Scholar 

  26. J.J. Sun, Y.J. Wang, S.W. Guo, and Y.N. Liu: Mater. Lett., 2020, vol. 266, p. 127495.

    Article  CAS  Google Scholar 

  27. A. García-Junceda, C. Capdevila, F.G. Caballero, and C.G. De Andres: Scripta Mater., 2008, vol. 58, pp. 134–37.

  28. C. García-Mateo and F.G. Caballero: Mater. Trans., 2005, vol. 46, pp. 1839–46.

    Article  Google Scholar 

  29. Y. Shen, J. Leng, and C. Wang: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1747–52.

    Article  Google Scholar 

Download references

Acknowledgments

The present work was financially supported by the National Key Research and Development Program of China (Grant No. 2017YFB0304502-01), National Natural Science Foundation of China (Grant No. 51974078), Fundamental Research Funds for the Central Universities of China (Grant Nos. N2025012 and N2125018), and Liaoning Revitalization Talents Program (Grant Nos. XLYC1802032 and XLYC1907176). Special thanks are due to the instrumental or data analysis from the Analytical and Testing Center, Northeastern University. We also acknowledge financial support from the China Scholarship Council (Grant No. 201906080127).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Ji or Miaoyong Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 23, 2021; accepted June 3, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, R., Ji, C., Chen, T. et al. Formation Mechanism of Abnormal Martensite in the Welded Joint of the Bainitic Rail. Metall Mater Trans B 52, 3220–3234 (2021). https://doi.org/10.1007/s11663-021-02250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02250-2

Navigation