Skip to main content
Log in

Research and modeling on correlation among microstructure, yield strength and process of bainite/martensite steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The contributions of different strengthening mechanisms to yield strength of bainite/martensite multiphase rail steel with different finish cooling temperatures in the controlled cooling process were quantitatively investigated. Dislocation density and substructure size of the rail steel were measured by scanning electron microscopy, electron backscatter diffraction and X-ray diffraction. The results show that the dislocation density increases with the decrease in block width in rail steel. Based on the correlation among dislocation density, block width and yield strength, a physical model was proposed to predict the yield strength of rail steel. The variation of block width and dislocation density in different positions of rail head microstructure was integrated with temperature field simulation. Dislocation density and block width reveal significant correlations with the finish cooling temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Yu, J.L. Gu, L. Xu, F.L. Shou, B.Z. Bai, Y.B. Liu, Mater. Des. 31 (2010) 3067–3072.

    Article  Google Scholar 

  2. U.P. Singh, B. Roy, S. Jha, S.K. Bhattacharyya, Mater. Sci. Technol. 17 (2001) 33–38.

    Article  Google Scholar 

  3. F.C. Zhang, C.L. Zheng, B. Lv, T.S. Wang, M. Li, M. Zhang, Eng. Fail. Anal. 16 (2009) 1461–1467.

    Article  Google Scholar 

  4. Z.L. Tan, B.F. An, G.H. Gao, X.L. Gui, B.Z. Bai, Eng. Fail. Anal. 47 (2015) 111–116.

    Article  Google Scholar 

  5. H.F. Lan, L.X. Du, R.D.K. Misra, Mater. Sci. Eng. A 611 (2014) 194–200.

    Article  Google Scholar 

  6. D. Wu, Z. Li, H.S. Lü, J. Iron Steel Res. Int. 15 (2008) No. 2, 65–70.

    Article  Google Scholar 

  7. X.G. Yu, X. Hao, R. Miao, Appl. Mech. Mater. 395–396 (2013) 1184–1189.

    Article  Google Scholar 

  8. Y. Tomita, K. Okabayashi, Metall. Mater. Trans. A 16 (1985) 73–82.

    Article  Google Scholar 

  9. A. Milenin, M. Pernach, L. Rauch, R. Kuziak, T. Zygmunt, M. Pietrzyk, Proced. Eng. 207 (2017) 2101–2106.

    Article  Google Scholar 

  10. H. Kang, D. Wu, X.M. Zhao, J. Iron Steel Res. Int. 20 (2013) No. 2, 33–37.

    Article  Google Scholar 

  11. P. Phetlam, V. Uthaisangsuk, Mater. Des. 82 (2015) 189–199.

    Article  Google Scholar 

  12. R.K. Dutta, R.H. Petrov, R. Delhez, M.J.M. Hermans, I.M. Richardson, A.J. Böttger, Acta Mater. 61 (2013) 1592–1602.

    Article  Google Scholar 

  13. S. Morito, H. Yoshida, T. Maki, X. Huang, Mater. Sci. Eng. A 438–440 (2006) 237–240.

    Article  Google Scholar 

  14. J. Pešička, R. Kužel, A. Dronhofer, G. Eggeler, Acta Mater. 51 (2003) 4847–4862.

    Article  Google Scholar 

  15. G. Ribárik, T. Ungár, J. Gubicza, J. Appl. Crystall. 34 (2001) 669–676.

    Article  Google Scholar 

  16. T. Kunieda, M. Nakai, Y. Murata, T. Koyama, M. Morinaga, ISIJ Int. 45 (2005) 1909–1914.

    Article  Google Scholar 

  17. G.H. Gao, H. Zhang, X.L. Gui, P. Luo, Z.L. Tan, B.Z. Bai, Acta Mater. 76 (2014) 425–433.

    Article  Google Scholar 

  18. G.H. Gao, B. Gao, X.L. Gui, J. Hu, J.Z. He, Z.L. Tan, B.Z. Bai, Mater. Sci. Eng. A 753 (2019) 1–10.

    Article  Google Scholar 

  19. C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, H. Dong, Scripta Mater. 58 (2008) 492–495.

    Article  Google Scholar 

  20. F. HajyAkbary, J. Sietsma, A.J. Böttger, M.J. Santofimia, Mater. Sci. Eng. A 639 (2015) 208–218.

    Article  Google Scholar 

  21. S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda, S. Ogata, ISIJ Int. 50 (2010) 875–882.

    Article  Google Scholar 

  22. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, Acta Mater. 51 (2003) 1789–1799.

    Article  Google Scholar 

  23. D. Embury, O. Bouaziz, Annu. Rev. Mater. Res. 40 (2010) 213–241.

    Article  Google Scholar 

  24. J. Bouquerel, K. Verbeken, B.C. De Cooman, Acta Mater. 54 (2006) 1443–1456.

    Article  Google Scholar 

  25. T.T. Huang, W.J. Dan, W.G. Zhang, Metall. Mater. Trans. A 48 (2017) 4553–4564.

    Article  Google Scholar 

  26. F.M. McGuire, Stainless steels for design engineers, ASM International, Materials Park, Ohio, USA, 2008.

    Book  Google Scholar 

  27. G.H. Gao, H. Zhang, Z.L. Tan, W.B. Liu, B.Z. Bai, Mater. Sci. Eng. A 559 (2013) 165–169.

    Article  Google Scholar 

  28. K.K. Wang, Z.L. Tan, G.H. Gao, X.L. Gui, R.D.K. Misra, B.Z. Bai, Mater. Sci. Eng. A 662 (2016) 162–168.

    Article  Google Scholar 

  29. J. Wilde, A. Cerezo, G.D.W. Smith, Scripta Mater. 43 (2000) 39–48.

    Article  Google Scholar 

  30. D.H. Sherman, S.M. Cross, S. Kim, F. Grandjean, G.J. Long, M.K. Miller, Metall. Mater. Trans. A 38 (2007) 1698–1711.

    Article  Google Scholar 

  31. R. Rodriguez, I. Gutiérrez, Mater. Sci. Forum 426–432 (2003) 4525–4530.

    Article  Google Scholar 

  32. T. Ungár, S. Harjo, T. Kawasaki, Y. Tomota, G. Ribarik, Z.M. Shi, Metall. Mater. Trans. A 48 (2017) 159–167.

    Article  Google Scholar 

  33. A. Shibata, T. Nagoshi, M. Sone, S. Morito, Y. Higo, Mater. Sci. Eng. A 527 (2010) 7538–7544.

    Article  Google Scholar 

  34. E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 98 (2015) 81–93.

    Article  Google Scholar 

  35. C.Y. Zhang, Q.F. Wang, J.X. Ren, R.X. Li, M.Z. Wang, F.C. Zhang, K.M. Sun, Mater. Sci. Eng. A 534 (2012) 339–346.

    Article  Google Scholar 

  36. C. Celada-Casero, J. Sietsma, M.J. Santofimia, Mater. Des. 167 (2019) 107625.

    Article  Google Scholar 

  37. K.K. Wang, Z.L. Tan, G.H. Gao, B. Gao, X.L. Gui, R.D.K. Misra, B.Z. Bai, Mater. Sci. Eng. A 675 (2016) 120–127.

    Article  Google Scholar 

  38. S.H. He, B.B. He, K.Y. Zhu, M.X. Huang, Acta Mater. 135 (2017) 382–389.

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the National Key Research and Development Program of China (2017YFB0304504), Fund of Key Laboratory of Advanced Materials of Ministry of Education (No. XJCL201908) and National Key Basic Research Program of China (2015CB654804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Jj., Zhang, M., Gao, Gh. et al. Research and modeling on correlation among microstructure, yield strength and process of bainite/martensite steel. J. Iron Steel Res. Int. 27, 834–841 (2020). https://doi.org/10.1007/s42243-020-00389-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00389-x

Keywords

Navigation