Skip to main content
Log in

Continuous Cooling Transformation Behavior in Welding Coarse-Grained Heat-Affected Zone of G115 Steel With the Different Content of Boron

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, the welding thermal simulation was performed to examine the effects of the boron content and the cooling time (t8/5) from 800 °C to 500 °C on the continuous cooling transformation (CCT) behavior of the welded coarse-grained heat-affected zone (CGHAZ) of G115 new martensitic heat-resistant steel. Subsequently, the microstructure, the precipitates, and the microhardness were observed and measured using the scanning electron microscope (SEM), the transmission electron microscope (TEM) and the microhardness tester. As revealed from the results, the B element increased Ac1 and Ac3 of G115 steel and decreased Ms and Mf. As a result, the CCT curve generally shifted down, and the decline increased with the increase in the B content. Through the segregation of B atoms at the prior-austenite grain boundaries and the formation of high melting point carbides, the nucleation and growth of austenite were inhibited, the austenitizing process was delayed, and Ac1 and Ac3 increased. The adsorption of B atoms on the undercooled austenite grain boundaries improved their stability, thereby promoting the decrease in Ms and Mf. The decrease in the alloy content in undercooled austenite brought by the formation of alloy cementite was the main reason for the gradual increase of Ms and Mf in materials containing B when there was a large t8/5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Z. Liu, Z. Chen, X. He, and H. Bao: Acta Metall. Sin., 2020, vol. 56, pp. 539–48.

    CAS  Google Scholar 

  2. S.K. Albert, M. Matsui, T. Watanabe, H. Hongo, and M. Tabuchi: Int. J. Pres. Ves. Pip., 2003, vol. 80, pp. 405–13.

    Article  CAS  Google Scholar 

  3. V. Thomas Paul, S. Saroja, P. Hariharan, A. Rajadurai, and M. Vijayalakshmi: J. Mater. Sci., 2007, vol. 42, pp. 5700–13.

    Article  Google Scholar 

  4. M. Sireesha, S. Sundaresan, and S.K. Albert: J. Mater. Eng. Perform., 2001, vol. 10, pp. 320–30.

    Article  CAS  Google Scholar 

  5. F. Abe, M. Tabuchi, M. Kondo, and S. Tsukamoto: Int. J. Pres. Ves. Pip., 2007, vol. 84, pp. 44–52.

    Article  CAS  Google Scholar 

  6. B. Xiao, S.D. Yadav, L. Zhao, Z. Tang, Y. Han, X. Yang, J.J. Kai, T. Yang, and L. Xu: Int. J. Plastic., 2021, vol. 147, p. 103124.

    Article  CAS  Google Scholar 

  7. Z. Liu, X. Wang, and C. Dong: Mater. Sci. Eng. A, 2020, vol. 787, p. 139529.

    Article  CAS  Google Scholar 

  8. M. Yang, Z. Zhang, Y. Liu, Y. Li, and J. Huang: Int. J. Pres. Ves. Pip., 2020, vol. 188, p. 104253.

    Article  CAS  Google Scholar 

  9. Y. Yu, Z. Liu, C. Zhang, Z. Fan, Z. Chen, H. Bao, H. Chen, and Z. Yang: Mater. Sci. Eng. A, 2020, vol. 788, p. 139468.

    Article  CAS  Google Scholar 

  10. P. Yang, Z. Liu, H. Bao, Y. Weng, and W. Liu: Mater. Sci. Eng. A, 2014, vol. 597, pp. 148–56.

    Article  Google Scholar 

  11. P. Yang and Z. Liu: Mater. Sci. Eng. A, 2016, vol. 650, pp. 290–94.

    Article  Google Scholar 

  12. B. Xiao, L. Xu, Z. Tang, L. Zhao, H. Jing, Y. Han, and H. Li: Mater. Sci. Eng. A, 2019, vol. 747, pp. 161–76.

    Article  CAS  Google Scholar 

  13. Z. Liu, Z. Liu, X. Wang, Z. Chen, and L. Ma: Mater. Sci. Eng. A, 2018, vol. 729, pp. 161–69.

    Article  CAS  Google Scholar 

  14. Z. Liu, Z. Liu, X. Wang, and Z. Chen: Mater. Charact., 2019, vol. 149, pp. 95–104.

    Article  CAS  Google Scholar 

  15. H. Jing, Z. Luo, L. Xu, L. Zhao, and Y. Han: Mater. Sci. Eng. A, 2018, vol. 731, pp. 394–402.

    Article  CAS  Google Scholar 

  16. M. Tabuchi, T. Watanabe, K. Kubo, M. Matsui, J. Kinugawa, and F. Abe: Int. J. Pres. Ves. Pip., 2001, vol. 78, pp. 779–84.

    Article  Google Scholar 

  17. M. Tabuchi, H. Hongo, and F. Abe: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 5068–75.

    Article  Google Scholar 

  18. F. Abe, M. Tabuchi, S. Tsukamoto, and T. Shirane: Int. J. Pres. Ves. Pip., 2010, vol. 87, pp. 598–604.

    Article  CAS  Google Scholar 

  19. Y. Liu, S. Tsukamoto, K. Sawada, and F. Abe: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 1306–14.

    Article  Google Scholar 

  20. T. Matsunaga, H. Hongo, M. Tabuchi, and R. Sahara: Mater. Sci. Eng. A, 2016, vol. 655, pp. 168–74.

    Article  CAS  Google Scholar 

  21. S. Zheng, Q. Wu, Q. Huang, S. Liu, and Y. Han: Fusion Eng. Des., 2011, vol. 86, pp. 2616–19.

    Article  CAS  Google Scholar 

  22. D. Deng, J. Sun, D. Dai, and X. Jiang: J. Mater. Eng. Perform., 2015, vol. 24, pp. 3487–3501.

    Article  CAS  Google Scholar 

  23. S. Kumar, S.K. Nath, and V. Kumar: Mater. Des., 2016, vol. 90, pp. 177–84.

    Article  CAS  Google Scholar 

  24. N. Huda, A. Midawi, J.A. Gianetto, and A.P. Gerlich: J. Mater. Res. Technol., 2021, vol. 12, pp. 613–28.

    Article  CAS  Google Scholar 

  25. W. Zhang, G. Zhao, and Q. Fu: Mater. Sci. Eng. A, 2018, vol. 736, pp. 276–87.

    Article  CAS  Google Scholar 

  26. F. Zhang and T. Lei: Wear, 1997, vol. 212, pp. 195–98.

    Article  CAS  Google Scholar 

  27. T.Y. Hsu and Y. Mou: Acta Metall. Sin., 1984, vol. 32, pp. 1469–81.

    Article  CAS  Google Scholar 

  28. W. Klement and A. Jayaraman: Prog. Solid State Chem., 1967, vol. 3, pp. 289–98.

    Article  CAS  Google Scholar 

  29. R. Sahara, T. Matsunaga, H. Hongo, and M. Tabuchi: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 2487–97.

    Article  Google Scholar 

  30. P.A. Manohar, M. Ferry, and T. Chandra: Isij. Int., 1998, vol. 38, pp. 913–24.

    Article  CAS  Google Scholar 

  31. C.J. Min, S. Kim, W.S. Dong, S.S. Hong, K.K. Hong, S.S. Sohn, and S. Lee: Mater. Sci. Eng. A, 2020, vol. 778, p. 139118.

    Article  Google Scholar 

  32. E. Malitckii, Y. Yagodzinskyy, and P. Vilaca: Mater. Sci. Eng. A, 2019, vol. 60, pp. 68–75.

    Article  Google Scholar 

  33. S.T. Kimmins and D.J. Gooch: Met. Sci., 1983, vol. 17, pp. 519–32.

    Article  CAS  Google Scholar 

  34. Z. Chen, Z. Chen, D. Kou, Y. Li, Y. Ma, and Y. Li: J. Iron Steel Res. Int., 2022, vol. 29, pp. 327–38.

    Article  CAS  Google Scholar 

  35. J. Moon, C.H. Lee, T.H. Lee, and H.C. Kim: Metall. Mater. Trans. A., 2015, vol. 46A, pp. 156–63.

    Article  Google Scholar 

  36. J. Moon, C.H. Lee, T.H. Lee, M.H. Jang, M.G. Park, and H.N. Han: J. Nucl. Mater., 2014, vol. 455, pp. 81–85.

    Article  CAS  Google Scholar 

  37. W. Zhang, W. Sha, W. Yan, W. Wang, Y. Shan, and K. Yang: Mater. Sci. Eng. A, 2014, vol. 604, pp. 207–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support of National Key R&D Program of China (No. 2017YFB0305202), Inner Mongolia Natural Science Foundation (No. 2016MS0510), and Inner Mongolia Natural Science Foundation (No. 2020MS05046), Key technology research program of Inner Mongolia Autonomous Region (No. 2021GG0047), Basic scientific research business cost project of colleges and universities directly under the Inner Mongolia Autonomous Region in 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Kou, D., Chen, Z. et al. Continuous Cooling Transformation Behavior in Welding Coarse-Grained Heat-Affected Zone of G115 Steel With the Different Content of Boron. Metall Mater Trans B 54, 1831–1844 (2023). https://doi.org/10.1007/s11663-023-02797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02797-2

Navigation