Skip to main content
Log in

Effect of Electromagnetic Stirring on Inclusions in Continuous Casting Blooms of a Gear Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of electromagnetic stirring at a continuous casting strand on the distribution of inclusions along the thickness of gear steel blooms was investigated. Inclusions in the subsurface of continuous casting blooms were Al2O3·CaO·CaS·MgO, similar to those in the molten steel of continuous casting tundish. Inclusions at 1/4 thickness from the loose side and the center of the bloom were Al2O3·CaS·MgO. The spatial distribution in the number density and composition of inclusions along the thickness from the loose side to the fixed side of the bloom was non-uniform but symmetric. The electromagnetic stirring efficiently improved steel cleanliness by lowering the average number density and area fraction of inclusions in the whole section of the CC bloom from 58.14 #/mm2 and 176.82 ppm to 30.90 #/mm2 and 111.67 ppm, respectively, and by increasing the average size and the maximum size of inclusions from 2.73 and 20.84 μm to 2.99 and 76.02 μm, respectively. More large-size inclusions contained K and Na by the slag entrainment in the mold with electromagnetic stirring were detected than those without electromagnetic stirring. Seven mm of the bloom from the loose side was analyzed for inclusions with size > 1.0 μm every 1 mm depth. The average CaO content of inclusions with size > 1.0 μm within the 7 mm subsurface of the bloom increased from 5.67 wt pct without electromagnetic stirring to 16.12 wt pct with electromagnetic stirring and increased from 10.24 wt pct without electromagnetic stirring to 21.31 wt pct with electromagnetic stirring for > 3.0 μm inclusions, which confirmed that unreasonable current electromagnetic stirring operation parameters will lead to slag entrainment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

(adapted from Ref. [31])

Fig. 8

adapted from Ref. [31])

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L.F. Zhang: Non-metallic Inclusions in Steels: Industrial Practice. Metallurgical Industry Press, Beijing, 2019.

    Google Scholar 

  2. [2] N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann and E.B. Pretorius: Metallurgical & Materials Transactions B, 2012, 43, 830.

    Article  CAS  Google Scholar 

  3. [3] S. Yang, Q. Wang, L.F. Zhang, J. Li and K. Peaslee: Metallurgical & Materials Transactions B, 2012, 43, 731.

    Article  CAS  Google Scholar 

  4. [4] N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind and S.R. Story: Metallurgical & Materials Transactions B, 2011, 42, 720.

    Article  Google Scholar 

  5. L.F. Zhang (2016) Steelmaking, 32: 1.

    Google Scholar 

  6. [6] L.F. Zhang, Y.F. Wang and X.J. Zuo: Metallurgical & Materials Transactions B, 2008, 39, 534.

    Article  Google Scholar 

  7. [7] W. Yang, L.F. Zhang, X.H. Wang, Y. Ren, X.F. Liu and Q.L. Shan: ISIJ Int., 2013, 53, 1401.

    Article  CAS  Google Scholar 

  8. L.F. Zhang: Non-metallic Inclusions in Steels: Fundamentals (in Chinese). Metallurgical Industry Press, 2019.

  9. [9] L.F. Zhang, F. li and W. Fang: Steelmaking, 2016, 32, 1.

    Google Scholar 

  10. Y. Liu: Doctor Thesis, University of Science and Technology Beijing, 2018.

  11. [11] Y. Chu, W. Li, Y. Ren and L.F. Zhang: Metallurgical and Materials Transactions B, 2019, 50, 2047.

    Article  CAS  Google Scholar 

  12. [12] G. Cheng, W. Li, X. Zhang and L.F. Zhang: Metals, 2019, 9, 642.

    Article  CAS  Google Scholar 

  13. [13] Y. Ren, L.F. Zhang and S.S. Li: ISIJ Int., 2014, 54, 2772.

    Article  CAS  Google Scholar 

  14. [14] W. Yang, C. Guo, C. Li and L.F. Zhang: Metallurgical & Materials Transactions B, 2017, 48, 2267.

    Article  Google Scholar 

  15. W. Chen and C. Wang: Journal of Hebei Polytechnic University Natural Science Edition, 2011, 33, 39.

    Google Scholar 

  16. J. Zhang and W. Song: Xinjiang Iron and Steel, 2006, 6.

  17. [17] G. Zhang and Y. Chen: Foundry Technology, 2005, 26, 720.

    Google Scholar 

  18. [18] L. Wang, Y. Bao, H. An, P. Li, Z. Peng and M. Wang: Continuous Casting, 2015, 40, 62.

    Google Scholar 

  19. [19] G. Li, F. Chen, W. Chen, J. Feng and R. Hui: Steelmaking, 2008, 24, 40.

    CAS  Google Scholar 

  20. [20] G. Zhang and Y. Chen: Steelmaking, 2008, 24, 21.

    Google Scholar 

  21. [21] W. Zhang, S. Luo, Y. Chen, W. Wang and M. Zhu: Metals, 2019, 9, 66.

    Article  CAS  Google Scholar 

  22. [22] H. Li, X. Zhang, T. Chen, L. Chen and W. Yang: Iron Steel Vanadium Titanium, 2018, 39, 137.

    Google Scholar 

  23. H. Sun, L. Li, X. Wu and C. Liu (2018) Metall. Res. Technol. 115, 100.

    Google Scholar 

  24. [24] S. Hayakawa, T. Shibata, H. Takahashi and H. Amano: Journal of the Iron and Steel Institute of Japan, 1989, 60, 216.

    Google Scholar 

  25. K. Sakamoto, T. Yamamoto, H. Ohkawa, J.I. Nishi, Y. Hatsuse and K.I. Morita: Journal of the Iron and Steel Institute of Japan, 1987, 73, 321.

    Article  Google Scholar 

  26. [26] Y. Yin, J. Zhang, Q. Dong and Q. Zhou: Ironmaking & Steelmaking, 2019, 46, 855.

    Article  CAS  Google Scholar 

  27. [27] Y.B. Yin, J.M. Zhang, S.W. Lei and Q.P. Dong: ISIJ Int., 2017, 57, 2165.

    Article  CAS  Google Scholar 

  28. M.L. Yang, Z.S. Li, F.L. Wei, C.G. Cheng, X. Chen and S.B. Qi: Advanced Research on Engineering Materials, Energy, Management and Control, Pts 1 and 2, 2012, 424-425, 811-+.

  29. [29] H. Lei, J.M. Jiang, B. Yang, Y. Zhao, H.W. Zhang, W.X. Wang and G.W. Dong: Metallurgical & Materials Transactions B, 2018, 49, 666.

    Article  Google Scholar 

  30. [30] H. Fukaya and T. Miki: ISIJ Int., 2011, 51, 2007.

    Google Scholar 

  31. S. Ji, Y. Wang, W. Chen, L.F. Zhang, W. Jia, W. Zhang, H. Liu and J. Zhang: Proceedings of the 21st national steelmaking conference in 2019, Xi’an, China, 2019.

  32. Y.D. Wang, W. Chen, D.B. Jiang and L.F. Zhang: Steel Res. Int., 2019, 92, 1900470(1).

  33. W. Chen, Y. Wang and L.F. Zhang: (under preparation).

  34. [34] H. Liu, M. Xu, S. Qiu and H. Zhang: Metallurgical & Materials Transactions B, 2012, 43, 1657.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Natural Science Foundation China (Grant Nos. U1860206, 51725402), S&T Program of Hebei (Grant No. 20311005D), the High Steel Center (HSC) at Yanshan University, and Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials (ICSM), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality Steel Consortium (HQSC) at University of Science and Technology Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifeng Zhang or Xindong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 16, 2020; accepted April 9, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, S., Zhang, L., Wang, Y. et al. Effect of Electromagnetic Stirring on Inclusions in Continuous Casting Blooms of a Gear Steel. Metall Mater Trans B 52, 2341–2354 (2021). https://doi.org/10.1007/s11663-021-02176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02176-9

Navigation