Skip to main content
Log in

Flow Transport and Inclusion Motion in Steel Continuous-Casting Mold under Submerged Entry Nozzle Clogging Condition

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Clogging of the submerged entry nozzle (SEN) is a serious problem during the continuous casting of steel, due to its influence on the casting operations and product quality. Fluid-flow-related phenomena in the continuous casting mold region with the SEN clogging are investigated in the current article, including the quantitative evaluation of inclusion removal, slag entrainment, heat transfer, and the prediction of breakouts. The calculations indicate that, in order to accurately simulate the fluid flow in the mold region, the SEN should be connected with the mold region and the two should be calculated together. In addition, the whole mold region has to be calculated. Clogging at the SEN at one side induces asymmetrical jets from the two outports; thus, the fluid flow in the mold is asymmetrical. In addition, more inclusions are carried by the flow to the top surface of the nonclogged side, and the slab at the nonclogged side has a lower quality. With SEN one-sided clogging, inclusions travel a much larger distance, on average, before they escape from the top or move to the bottom. The overall inclusion entrainment fraction from the entire top surface for inclusions of any size is less than 10 pct. A higher turbulence energy and a larger surface velocity induce more inclusion entrainment from the top surface. Smaller inclusions are more easily entrained into the steel than are larger ones. More >200-μm inclusions can be entrained into the molten steel from the top slag with SEN clogging than without clogging. The SEN one-sided clogging generates an asymmetrical temperature distribution in the mold; it also generates temperatures higher than the liquidus temperature at some locations of the solidified shell, which increases the risk of breakouts. The SEN clogging should be minimized in order to achieve a uniform steel cleanliness, a cleaner steel, and a safe continuous casting operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

C D :

dimensionless drag coefficient

d p :

particle diameter (m or μm)

t :

time (s)

u pi :

particle velocity at direction i (m/s)

u i :

velocity components of the fluid flow (m/s)

k :

local level of turbulent kinetic energy (m2/s2)

Re p :

particle Reynolds number ( \( \text{Re}_p = {{\rho d_p \left| {u - u_p } \right|}\mathord{\left/ {\vphantom {{\rho d_p \left| {u - u_p } \right|}\mu }} \right. \kern-\nulldelimiterspace} \mu }\))

\( \bar{u} \) :

mean fluid phase velocity (m/s)

u′:

random velocity fluctuation (m/s)

ρ :

density of the molten steel (kg/m3)

ρ P :

inclusion density (kg/m3)

ξ :

random number

μ :

viscosity of the molten steel (kg/(m·s))

References

  1. Y. Vermeulen, B. Coletti, B. Blanpain, J. Vleugels: ISIJ Int., 2002, vol. 42 (11), pp. 1234–40

    Article  CAS  Google Scholar 

  2. S.K. Saxena, H. Sandberg, T. Waldenstrom, A. Persson, S. Steensen: Scand. J. Metall., 1978, vol. 7, pp. 126–33

    CAS  Google Scholar 

  3. E. Lürsen: 1st Eur. Conf. on Continuous Casting, Associazione Italiana di Metallurgia, Italy, 1991, vol. 1, pp. 1.37–1.57

  4. P.M. Benson, Q.K. Robinson, H.K. Park: Steelmaking Conf. Proc., ISS, Warrendale, PA, 1993, vol. 76, pp. 533–39

    Google Scholar 

  5. M. Alavanja, R.T. Gass, R.W. Kittridge, H.T. Tsai: Steelmaking Conf. Proc., ISS, Warrendale, PA, 1995, vol. 78, pp. 415–26

    Google Scholar 

  6. K.G. Rackers, B.G. Thomas: Steelmaking Conf. Proc., ISS, Warrendale, PA, 1995, vol. 78, pp. 723–34

    Google Scholar 

  7. H. Bai, B.G. Thomas: in Materials Processing in the Computer Age, V. Voller, H. Henein, eds., TMS, Warrendale, PA, 2000, vol. 3, pp. 85–99

    Google Scholar 

  8. H. Bai, B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67

    Article  CAS  Google Scholar 

  9. S. Li, W. Jin, L. Zhang, X. Zuo, and Y. Wang: Proc. AISTech 2007 Iron Steel Technology Conf. Expo., vol. II, AIST, Warrendale, PA, 2008, pp. 771–80

  10. E.S. Szekeres: 4th Int. Conf. Clean Steel, The Institute of Materials, London, 1992, pp. 756–76

    Google Scholar 

  11. B.G. Thomas, X. Huang: 76th Steelmaking Conf. Proc., ISS, Warrendale, PA, 1993, vol. 76, pp. 273–89

    Google Scholar 

  12. B.G. Thomas and H. Bai: 18th Process Technology Division Conf. Proc., ISS, Warrendale, PA, 2001, pp. 895–912

  13. Y. Miki, H. Kitaoka, T. Sakuraya, and T. Fujii: ISIJ Int., 1992, vol. 32 (1), pp. 142–49 and 1021

  14. T.B. Braun, J.F. Elliott, M.C. Flemings: Metall. Trans. B, 1979, vol. 10B, pp. 171–84

    Article  CAS  Google Scholar 

  15. L. Zhang, B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 733–61

    Article  CAS  Google Scholar 

  16. L. Zhang and B.G. Thomas: XXIV Steelmaking Nat. Symp. Mexico, Instituto Tecnológico de Morelia, Morelia, México, 2003, pp. 184–98

  17. F.A. Vonesh Jr.: Iron Steel Eng., 1987, vol. 64, pp. 35–39

    CAS  Google Scholar 

  18. B.G. Thomas, H. Bai: 78th Steelmaking Conf. Proc., ISS, Warrendale, PA, 2001, pp. 895–912

    Google Scholar 

  19. H. Bai, B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 702–22

    Google Scholar 

  20. L. Zhang, J. Aoki, B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 361–79

    Article  CAS  Google Scholar 

  21. H. Yu, G. Zhu, X. Wang, J. Zhang, W. Wang: J. Univ. Sci. Technol. Beijing, 2005, vol. 12 (4), pp. 303–07

    Google Scholar 

  22. R. Sambasivam: Ironmaking and Steelmaking, 2006, vol. 33, pp. 439–53

    Article  CAS  Google Scholar 

  23. N. Bessho, R. Yoda, H. Yamasaki, T. Fujii, T. Nozaki, S. Takatori: Iron Steelmaker, 1991, vol. 18 (4), pp. 39–44

    CAS  Google Scholar 

  24. I. Sawada, H. Tanaka, and I. Takigawa: 6th Int. Iron Steel Congr., The Iron and Steel Institute of Japan, 1990, vol. 3, pp. 334–47

  25. B.G. Thomas, L. Zhang: ISIJ Int., 2001, vol. 41 (10), pp. 1181–93

    Article  CAS  Google Scholar 

  26. FLUENT6 .1 Manual, Fluent Inc., Lebanon, NH, 2003

  27. L. Zhang, S. Taniguchi: Int. Mater. Rev., 2000, vol. 45 (2), pp. 59–82

    Article  CAS  Google Scholar 

  28. M. Yemmou, M.A.A. Azouni, P. Casses: J. Cryst. Growth, 1993, vol. 128 (4), pp. 1130–36

    Article  CAS  Google Scholar 

  29. J.K. Kim, P.K. Rohatgi: Metall. Mater. Trans. B, 1998, vol. 29A, pp. 351–75

    CAS  Google Scholar 

  30. D.M. Stefanescu, A.V. Catalina: ISIJ Int., 1998, vol. 38 (5), pp. 503–05

    Article  CAS  Google Scholar 

  31. Y. Ho, C. Chen, W. Hwang: ISIJ Int., 1994, vol. 34 (3), pp. 255–64

    Article  Google Scholar 

  32. B.G. Thomas and H. Zhu: Proc. Int. Symp. Advanced Materials Technology for 21st Century, I. Ohnaka and D. Stefanescu, eds., TMS, Warrendale, PA, 1996, pp. 197–208

  33. B. Yang, J. Su: J. Xi’an Jiao Tong Univ., 1997, vol. 31 (4), pp. 67–72

    CAS  Google Scholar 

  34. H. Bai, B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 269–84

    Article  CAS  Google Scholar 

  35. L. Zhang, S. Yang, X. Wang, K. Cai, J. Li, X. Wan, and B.G. Thomas: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 63–83

    Article  CAS  Google Scholar 

  36. B.G. Thomas, L.J. Mika, F.M. Najjar: Metall. Trans. B, 1990, vol. 21B, pp. 387–400

    Article  CAS  Google Scholar 

  37. B.G. Thomas: ISS Trans., 1989, vol. 16 (12), pp. 53–66

    Google Scholar 

  38. S. Sivaramakrishnan, B.G. Thomas, S.P. Vanka: in Materials Processing in the Computer Age, V. Voller H. Henein, eds., TMS, Warrendale, PA, 2000, vol. 3, pp. 189–98

    Google Scholar 

  39. B.G. Thomas: in Modeling and Simulation for Casting and Solidification: Theory and Applications, O. Yu, ed., Marcel Dekker, New York, NY, 2001, pp. 499–540

    Google Scholar 

  40. B.G. Thomas, H. Bai, S. Sivaramakrishnan, and S.P. Vanka: Int. Symp. Cutting Edge Computer Simulation of Solidification and Processes, I. Ohnaka, ed., ISIJ, 1999, pp. 113–28

  41. X. Huang, B.G. Thomas, F.M. Najjar: Metall. Trans. B, 1992, vol. 23B, pp. 339–56

    Article  CAS  Google Scholar 

  42. F.M. Najjar, D.E. Hershey, B.G. Thomas: 4th FIDAP Users Conf., Fluid Dynamics International, Inc., Evanston, IL, 1991, pp. 1–55

    Google Scholar 

  43. L. Zhang, W. Pluschkell: Ironmaking and Steelmaking, 2003, vol. 30 (2), pp. 106–10

    Article  CAS  Google Scholar 

  44. Y. Wang, G. Wen, P. Tang, H. Xu, G. Luo, Z. Chen, N. Han, and X. Ni: Northeastern University PHD Student Forum—Metallurgy, Northeastern University Press, Shenyang, China, 2006, p. 102

  45. J. Wei, Z. Tian, L. Zhang, K. Cai, Y. Zhou: Proc. AISTech 2005 Iron Steel Technol. Conf. Expo., AIST, Warrendale, PA, 2005, vol. II, pp. 585–92

    Google Scholar 

  46. M. Byrne, T.W. Fenicle, and A.W. Cramb: Steelmaking Conf. Proc., ISS, Warrendale, PA, 1985, vol. 68, pp. 451–61 and 999

  47. D.S. Kumar, T. Rajendra, A. Sarkar, A.K. Karande, U.S. Yadav: Ironmaking and Steelmaking, 2007, vol. 34 (2), pp. 185–91

    Article  CAS  Google Scholar 

  48. H. Jacobi, H.-J. Ehrenberg, K. Wunnenberg: Stahl Eisen., 1998, vol. 118 (11), pp. 87–94

    CAS  Google Scholar 

  49. A. Fuchs, H. Jacobi, K. Wagner, K. Wunnenberg: Stahl Eisen., 1993, vol. 113 (11), pp. 51–60

    CAS  Google Scholar 

  50. H.-U. Lindenberg: Stahl Eisen., 1999, vol. 119 (5), pp. 79–86

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Manuscript submitted April 26, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Wang, Y. & Zuo, X. Flow Transport and Inclusion Motion in Steel Continuous-Casting Mold under Submerged Entry Nozzle Clogging Condition. Metall Mater Trans B 39, 534–550 (2008). https://doi.org/10.1007/s11663-008-9154-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9154-6

Keywords

Navigation