Skip to main content
Log in

Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The existence of angular and hard AlN inclusions would seriously deteriorate the service life of high-nitrogen stainless bearing steels (HNSBSs). In this work, the formation mechanism of AlN inclusion in HNSBSs under as-cast, annealing and austenitizing states was systematically investigated by microstructure observation and thermodynamic, kinetic analyses. The results showed that the concentration product of Al and N could exceed the critical solubility of AlN inclusion at liquidus temperature with the Al content higher than 0.050 wt pct, which led to the formation of AlN inclusions about 1 to 5 μm (equivalent diameter) in liquid steel. Based on the ‘Clyne-Kurz’ model, AlN inclusion could form at the solidifying front due to the enrichment of N in the residual liquid steel with the Al content higher than 0.030 wt pct. Besides, the precipitation of Cr2N and the extremely low diffusion coefficient of Al in α phase restrained the precipitation of AlN during annealing at 1023 K. However, AlN and AlN-MnS composite inclusions less than 0.6 μm could precipitate during austenitizing at 1323 K with the Al content higher than 0.006 wt pct, which was the critical Al content to avoid AlN formation in HNSBSs after melting, solidification, and heat treatment processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. 1. J. Dai, H. Feng, H.B. Li, Z.H. Jiang, H. Li, S.C. Zhang, P. Zhou, and T. Zhang: Corros. Sci., 2020, vol. 174, pp. 108792.

    Article  CAS  Google Scholar 

  2. 2. H.B. Li, Z.H. Jiang, H. Feng, S.C. Zhang, L. Li, P.D. Han, R.D.K. Misra, and J.Z. Li: Mater. Des., 2015, vol. 84, pp. 291-99.

    Article  CAS  Google Scholar 

  3. 3. D.W. Kim: J. Nucl. Mater., 2012, vol. 420, pp. 473-78.

    Article  CAS  Google Scholar 

  4. 4. W. Horvath, W. Prantl, H. Stroißnigg, and E.A. Werner: Mater. Sci. Eng. A, 1998, vol. 256, pp. 227-36.

    Article  Google Scholar 

  5. 5. C.O.A. Olsson: Corros. Sci., 1995, vol. 37, pp. 467-79.

    Article  CAS  Google Scholar 

  6. 6. G. Lothongkum, P. Wongpanya, S. Morito, T. Furuhara, and T. Maki: Corros. Sci., 2006, vol. 48, pp. 137-53.

    Article  CAS  Google Scholar 

  7. 7. H. Feng, Z.H. Jiang, H.B. Li, P.C. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D.K. Xu, and Z.G. Chen: Corros. Sci., 2018, vol. 144, pp. 288-300.

    Article  CAS  Google Scholar 

  8. 8. H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, and Z.G. Chen: Corros. Sci., 2019, vol. 158, pp. 108081.

    Article  CAS  Google Scholar 

  9. 9. V. Valasamudram, S.T. Selvamani, M. Vigneshwar, V. Balasubramanian, and D. Jayaperumal: Mater. Today: Proc., 2018, vol. 5, pp. 8338-47.

    CAS  Google Scholar 

  10. 10. W.C. Jiao, H.B. Li, J. Dai, H. Feng, Z.H. Jiang, T. Zhang, D.K. Xu, H.C. Zhu, and S.C. Zhang: J. Mater. Sci. Technol., 2019, vol. 35, pp. 2357-64.

    Article  Google Scholar 

  11. 11. W. Trojahn, E. Streit, H.A. Chin, and D. Ehlert: Materialwiss. Werkstofftech., 1999, vol. 30, pp. 605-11.

    Article  CAS  Google Scholar 

  12. 12. Z.X. Cao, Z.Y. Shi, B. Liang, X.D. Zhang, W.Q. Cao, and Y.Q. Weng: Int. J. Fatigue, 2020, vol. 140, pp. 105854.

    Article  CAS  Google Scholar 

  13. 13. Z.K. Li, J.Z. Lei, H.F. Xu, F. Yu, H. Dong, and W.Q. Cao: J. Iron Steel Res. Int., 2016, vol. 28, pp. 1-12.

    Google Scholar 

  14. 14. Q.R. Tian, G.C. Wang, Y. Zhao, J. Li, and Q. Wang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1149-64.

    Article  Google Scholar 

  15. 15. Z.X. Cao, Z.Y. Shi, F. Yu, G.L. Wu, W.Q. Cao, and Y.Q. Weng: Int. J. Fatigue, 2019, vol. 126, pp. 1-5.

    Article  CAS  Google Scholar 

  16. 16. C.Y. Yang, P. Liu, Y.K. Luan, D.Z. Li, and Y.Y. Li: Int. J. Fatigue, 2019, vol. 128, pp. 105193.

    Article  CAS  Google Scholar 

  17. 17. Y.G. Chi, Z.Y. Deng, and M.Y. Zhu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 440-50.

    Article  CAS  Google Scholar 

  18. 18. J. Jang, M. Paek, and J. Pak: ISIJ Int., 2017, vol. 57, pp. 1821-30.

    Article  CAS  Google Scholar 

  19. 19. L.W. Xu, H.B. Li, H.B. Zheng, P.C. Lu, H. Feng, S.C. Zhang, W.C. Jiao, and Z.H. Jiang: J. Iron Steel Res. Int., 2020, vol. 27, pp. 1466-75.

    Article  Google Scholar 

  20. 20. Z.W. Hou, M. Jiang, E.J. Yang, S.Y. Gao, and X.H. Wang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3056-66.

    Article  Google Scholar 

  21. 21. J.H. Park, and Y. Kang: Steel Res. Int., 2017, vol. 88, pp. 1700130.

    Article  Google Scholar 

  22. 22. C.L. Zheng, B. Lv, F.C. Zhang, Z.N. Yang, J. Kang, L. She, and T.S. Wang: Scr. Mater., 2016, vol. 114, pp. 13-16.

    Article  CAS  Google Scholar 

  23. 23. F.G. Wilson, and T. Gladman: Int. Mater. Rev., 1988, vol. 33, pp. 221-86.

    Article  CAS  Google Scholar 

  24. 24. N.H. Croft, A.R. Entwisle, and G.J. Davies: Metals Technol., 2013, vol. 10, pp. 125-29.

    Article  Google Scholar 

  25. 25. C.B. Shi, X.C. Chen, and H.J. Guo: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 295-302.

    Article  CAS  Google Scholar 

  26. 26. H. Liu, J. Liu, S. Michelic, F. Wei, C. Zhuang, Z. Han, and S. Li: Ironmak. Steelmak., 2015, vol. 43, pp. 1-9.

    Google Scholar 

  27. 27. R. Rene, S. Sabine, Z. Sabine, and K. Ernst: Steel Res. Int., 2011, vol. 82, pp. 905-10.

    Article  Google Scholar 

  28. 28. R. Radis, and E. Kozeschnik: Modell. Simul. Mater. Sci. Eng., 2010, vol. 18, pp. 055003.

    Article  Google Scholar 

  29. 29. L.M. Cheng, E.B. Hawbolt, and T.R. Meadowcroft: Scr. Mater., 1999, vol. 41, pp. 673–78.

    Article  CAS  Google Scholar 

  30. 30. M. Lückl, T. Wojcik, E. Povoden-Karadeniz, S. Zamberger, and E. Kozeschnik: Steel Res. Int., 2017, vol. 89, pp. 1700342.

    Article  Google Scholar 

  31. 31. Y. Luo, M. Li, P.R. Scheller, S. Sridhar, and L.F. Zhang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2459-70.

    Article  Google Scholar 

  32. 32. J. Bott, H.B. Yin, and S. Sridhar: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2222-31.

    Article  Google Scholar 

  33. 33. Y.L. Chen, Y. Wang, and A.M. Zhao: J. Iron Steel Res. Int., 2012, vol. 19, pp. 51-56.

    Article  Google Scholar 

  34. 34. H. Feng, H.B. Li, X.L. Wu, Z.H. Jiang, S. Zhao, T. Zhang, D.K. Xu, S.C. Zhang, H.C. Zhu, B.B. Zhang, and M.X. Yang: J. Mater. Sci. Technol., 2018, vol. 34, pp. 1781-90.

    Article  Google Scholar 

  35. 35. H. Wada, and R.D. Pehlke: Metall. Trans. B, 1979, vol. 10B, pp. 409-12.

    Article  CAS  Google Scholar 

  36. 36. G. Sigworth, and J. Elliott: Met. Sci., 1974, vol. 8, pp. 298-310.

    Article  CAS  Google Scholar 

  37. 37. S.B. Lee, D. Kim, and J.J. Pak: ISIJ Int., 2009, vol. 49, pp. 337-42.

    Article  Google Scholar 

  38. 38. D.H. Kim, M.S. Jung, H. Nam, M.K. Paek, and J.J. Pak: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1106-12.

    Article  Google Scholar 

  39. 39. H. Ohta, and H. Suito: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 943-53.

    Article  CAS  Google Scholar 

  40. 40. S.K. Choudhary, and A. Ghosh: ISIJ Int., 2009, vol. 49, pp. 1819-27.

    Article  CAS  Google Scholar 

  41. 41. M. Paek, J. Jang, M. Jiang, and J. Pak: ISIJ Int., 2013, vol. 53, pp. 973-78.

    Article  CAS  Google Scholar 

  42. 42. L.T. Gui, M.J. Long, Y.W. Huang, D.F. Chen, H.B. Chen, H.M. Duan, and S. Yu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3280-92.

    Article  Google Scholar 

  43. 43. J.H. Shin, and J.H. Park: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1211-24.

    Article  Google Scholar 

  44. 44. Y.W. Huang, M.J. Long, P. Liu, D.F. Chen, H.B. Chen, L.T. Gui, T. Liu, and S. Yu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2504-15.

    Article  Google Scholar 

  45. 45. H.C. Zhu, Z.H. Jiang, H.B. Li, J.H. Zhu, H. Feng, S.C. Zhang, B.B. Zhang, P.B. Wang, and G.H. Liu: Steel Res. Int., 2017, vol. 88, pp. 1600509.

    Article  Google Scholar 

  46. 46. Y.Z. Shen, J.H. Liu, H. Xu, and H.B. Liu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2963-75.

    Article  Google Scholar 

  47. 47. F. Yang, W.C. Zhao, Y. Hou, X.L. Guo, Q. Li, X. Li, J.B. Yu, Y.B. Zhong, K. Deng, and Z.M. Ren: ISIJ Int., 2020, vol. 61, pp. 229-38.

    Article  Google Scholar 

  48. 48. L. Gui, M. Long, D. Chen, J. Zhao, Q. Wang, and H. Duan: J. Mater. Res. Technol., 2020, vol. 9, pp. 89-103.

    Article  CAS  Google Scholar 

  49. 49. Y. Ueshima, S. Mizoguchi, T. Matsumiya, and H. Kajioka: Metall. Trans. B, 1986, vol. 17B, pp. 845-59.

    Article  CAS  Google Scholar 

  50. 50. J.M. Kim, and J.K. Park: Philos. Mag. Lett., 2017, vol. 97, pp. 1-8.

    Google Scholar 

Download references

Acknowledgment

This research was sponsored by the National Natural Science Foundation of China [Grant Nos. U1960203/51774074/52004060], China National Postdoctoral Program for Innovative Talents [Grant No. BX20200076], China Postdoctoral Science Foundation [Grant No. 2020M670775], Talent Project of Revitalizing Liaoning [Grant No. XLYC1902046], and Shanxi Municipal Major Science and Technology Project [Grant No. 20181101014]. Special thanks are due to the instrumental analysis from Analytical and Testing Centre, Northeastern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Bing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 12 January 2021; accepted 1 April 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, PC., Li, HB., Feng, H. et al. Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels. Metall Mater Trans B 52, 2210–2223 (2021). https://doi.org/10.1007/s11663-021-02171-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02171-0

Navigation