Skip to main content
Log in

Effects of Inclusion Precipitation, Partition Coefficient, and Phase Transition on Microsegregation for High-Sulfur Steel Solidification

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A microsegregation model coupled with inclusion precipitation, variable partition coefficient, and diffusion coefficient of the solute was developed to investigate solute microsegregation for high-sulfur steel solidification. The effects of the solidification path and phase transition on solute microsegregation were explored. The results showed that the solute concentration predicted by the variable partition coefficient was quite different from the solute concentration predicted by the constant partition coefficient, and the percentage differences of solutes Si, P, and S were − 35.5, − 25.0, and 43.0 pct, respectively. For high-sulfur steel solidification, the concentrations of solutes Mn and S would be reduced by 88.3 and 74.9 pct, respectively, due to the precipitation of MnS. The solidification path and phase transition has a significant effect on the solute partition coefficient and microsegregation. With the increase in C content, the fraction of δ-phase decreased while the fraction of the γ-phase increased, and the microsegregation ratio of solutes C and Si decreased while the microsegregation ratio of solute P increased. To predict microsegregation more accurately, all influencing factors of the partition coefficient, inclusion precipitation, and phase transition should be comprehensively considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 1. J. Zeng, W. Q. Chen, Y. D. Yang and A. Mclean, Metallurgical and materials transactions B 2017, vol. 48, pp. 3083-3100.

    Article  Google Scholar 

  2. C. Xiao, J. M. Zhang, Y. Z. Luo, L. Wu and S. X. Wang, Materials Processing Fundamentals 2016, pp. 109-116.

  3. 3. M. J. Long and D. F. Chen, Steel Research International 2011, vol. 82, pp. 847-856.

    Article  CAS  Google Scholar 

  4. 4. H. B. Sun and J. Q. Zhang, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 2014, vol. 45, pp. 936-946.

    Article  Google Scholar 

  5. 5. L. Devillers, D. Kaplan and J. P. Jansen, Revue De Metallurgie-Cahiers D Informations Techniques 1988, vol. 85, pp. 267-282.

    CAS  Google Scholar 

  6. 6. D. Z. Li, X. Q. Chen, P. X. Fu, X. P. Ma, H. W. Liu, Y. Chen, Y. F. Cao, Y. K. Luan and Y. Y. Li, Nature Communications 2014, vol. 5, p. 5572.

    Article  CAS  Google Scholar 

  7. 7. G. Lesoult, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2005, vol. 413, pp. 19-29.

    Article  Google Scholar 

  8. 8. Y. M. Won and B. G. Thomas, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 2001, vol. 32, pp. 1755-1767.

    Article  Google Scholar 

  9. 9. E. Scheil, Z. F. Metallkunde 1942, vol. 34, pp. 70-72.

    Google Scholar 

  10. 10. H. D. Brody and M. C. Flemings, Transactions of the Metallurgical Society of Aime 1966, vol. 236, pp. 615-&.

    Google Scholar 

  11. 11. T. W. Clyne and W. Kurz, Metallurgical Transactions a-Physical Metallurgy and Materials Science 1981, vol. 12, pp. 965-971.

    Article  Google Scholar 

  12. 12. I. Ohnaka, Transactions of the Iron and Steel Institute of Japan 1986, vol. 26, pp. 1045-1051.

    Article  CAS  Google Scholar 

  13. 13. V. R. Voller and C. Beckermann, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 1999, vol. 30, pp. 2183-2189.

    Article  Google Scholar 

  14. 14. Y. Ueshima, S. Mizoguchi, T. Matsumiya and H. Kajioka, Metallurgical Transactions B-Process Metallurgy 1986, vol. 17, pp. 845-859.

    Article  Google Scholar 

  15. 15. S. Kobayashi, Journal of Crystal Growth 1988, vol. 88, pp. 87-96.

    Article  CAS  Google Scholar 

  16. 16. T. Matsumiya, H. Kajioka, S. Mizoguchi, Y. Ueshima and H. Esaka, Transactions of the Iron and Steel Institute of Japan 1984, vol. 24, pp. 873-882.

    Article  Google Scholar 

  17. 17. D. L. You, S. Michelic, G. Wieser and C. Bernhard, Journal of materials science 2017, vol. 52, pp. 1797-1812.

    Article  CAS  Google Scholar 

  18. 18. N. Cheung, R. Bertazzoli and A. Garcia, Separation and Purification Technology 2007, vol. 52, pp. 504-511.

    Article  CAS  Google Scholar 

  19. 19. Y. W. Huang, M. J. Long, P. Liu, D. F. Chen, H. B. Chen, L. T. Gui, T. Liu and S. Yu, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 2017, vol. 48, pp. 2504-2515.

    Article  Google Scholar 

  20. 20. H. B. Chen, M. J. Long, J. S. Cao, D. F. Chen, T. Liu and Z. H. Dong, Metals - Open Access Metallurgy Journal 2017, vol. 7, p. 288.

    Google Scholar 

  21. 21. Z. Z. Liu, J. Wei and K. K. Cai, ISIJ international 2007, vol. 42, pp. 958-963.

    Article  Google Scholar 

  22. 22. L. T. Gui, M. J. Long, D. F. Chen, Y. W. Huang, T. Liu, H. B. Chen and H. M. Duan, Journal of Materials Research 2017, vol. 32, pp. 3854-3863.

    Article  CAS  Google Scholar 

  23. 23. M. Wintz, M. Bobadilla, J. Lehmann and H. Gaye, Transactions of the Iron & Steel Institute of Japan 1995, vol. 35, pp. 715-722.

    Article  CAS  Google Scholar 

  24. 24. S. Luo, M. Y. Zhu, J. L. Cheng and Z. Z. Cai, Iron & Steel 2010, vol. 45, pp. 31-36.

    CAS  Google Scholar 

  25. 25. D. L. You, S. K. Michelic, C. Bernhard, D. Loder and G. Wieser, ISIJ international 2016, vol. 56, pp. 1770-1778.

    Article  CAS  Google Scholar 

  26. 26. D. L. You, C. Bernhard, G. Wieser and S. Michelic, Steel Research International 2016, vol. 87, pp. 840-849.

    Article  CAS  Google Scholar 

  27. 27. J. Y. Xu, Z. Q. Liu, G. Q. Guo and M. Chen, International Journal of Advanced Manufacturing Technology 2013, vol. 67, pp. 517-533.

    Article  Google Scholar 

  28. 29. Y. Ueshima, K. Isobe, S. Mizoguchi, H. Maede and H. Kajioka, Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan 1988, vol. 74, pp. 465-472.

    Article  CAS  Google Scholar 

  29. 30. C. W. Bale, E. Belisle, P. Chartrand, S. A. Decterov, G. Eriksson, A. E. Gheribi, K. Hack, I. H. Jung, Y. B. Kang, J. Melancon, A. D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer and M. A. Van Ende, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 2016, vol. 54, pp. 35-53.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study is financially supported by the National Natural Science Foundation of China (NSFC, Project No. 51504048). The authors would like to gratefully acknowledge the support by the Natural Science Foundation of Chongqing (Project No. cstc2018jcyjAX0647). The study is also supported by the Fundamental Research Funds for the Central Universities of China (Project No. cqu2018CDHB1B05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mujun Long or Dengfu Chen.

Additional information

Manuscript submitted April 23, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, L., Long, M., Huang, Y. et al. Effects of Inclusion Precipitation, Partition Coefficient, and Phase Transition on Microsegregation for High-Sulfur Steel Solidification. Metall Mater Trans B 49, 3280–3292 (2018). https://doi.org/10.1007/s11663-018-1401-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1401-x

Keywords

Navigation