Skip to main content
Log in

Effect of Thermal History on the Deformation of Non-metallic Inclusions During Plain Strain Compression

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The deformation of inclusions in the steel was affected by the thermal history during the physical simulation of steel processing. After plain strain compression with a reduction of 30 pct, the average aspect ratio of inclusions in the steel sample cooled down to 1673 K from semi-solid state was 1.89, which was significantly higher than 1.29 in the steel sample heated persistently up to the same temperature. The mechanism was revealed by inclusion transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. [1] C. Devadas, I. V. Samarasekera, and E. B. Hawbolt: Metall. Trans. A, 1991, vol. 22A, pp. 335-49.

    Article  CAS  Google Scholar 

  2. [2] M. F. Buchely, D. M. Field, and D. C. Van Aken: Metall. Mate. Trans. B, 2019, vol. 50B, pp. 1180-92.

    Article  Google Scholar 

  3. [3] A. M. El-Wazri, F. Hassani, S. Yue, E. Es-Sadiqi, L. E. Collins, and K. Iqbal: Trans. Iron Steel Inst. Jap., 2007, vol. 39, pp. 253-62.

    Article  Google Scholar 

  4. [4] S. Akhlaghi, and S. Yue: ISIJ Int., 2001, vol. 41, pp. 1350-6.

    Article  CAS  Google Scholar 

  5. [5] D. Zhao, H. Li, C. Bao, and J. Yang: ISIJ Int., 2015, vol. 55, pp. 2115-24.

    Article  CAS  Google Scholar 

  6. [6] A. Dehghan-Manshadi, and R. Dippenaar: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3291-6.

    Article  Google Scholar 

  7. [7] R. Maiti, and E. Hawbolt: J. Mater. Energy Syst., 1985, vol. 6, pp. 251-62.

    Article  CAS  Google Scholar 

  8. [8] W. Yang, C. Guo, L. Zhang, H. Ling, and C. Li: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2717-30.

    Article  Google Scholar 

  9. [9] Q. Ren, Y. Zhang, Y. Ren, L. Zhang, J. Wang, and Y. Wang: J. Mater. Sci. Technol., 2021, vol. 61, pp. 147-58.

    Article  Google Scholar 

  10. [10] Y. Chu, W. Li, Y. Ren, and L. Zhang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2047-62.

    Article  Google Scholar 

  11. [11] J. Guo, S. Cheng, and Z. Cheng: ISIJ Int., 2013, vol. 53, pp. 2142-51.

    Article  CAS  Google Scholar 

  12. [12] H. Iwai, B. Tsujino, S. Isa, and T. Ao: Tetsu-to-Hagane, 1968, vol. 54, pp. 1037-46.

    Article  CAS  Google Scholar 

  13. [13] J. H. Beynon, and C. M. Sellars: J. Test. Eval., 1985, vol. 13, pp. 28-38.

    Article  Google Scholar 

  14. [14] R. Colas, and C. M. Sellars: J. Test. Eval., 1987, vol. 15, pp. 342-9.

    Article  CAS  Google Scholar 

  15. [15] C. Bale, P. Chartrand, S. Degterov, G. Eriksson, K. Hack, R. Mahfoud, J. Melançon, A. Pelton, and S. Petersen: Calphad, 2002, vol. 26, pp. 189-228.

    Article  CAS  Google Scholar 

  16. [16] S. Nurmi, S. Louhenkilpi, and L. Holappa: Steel Res. Int., 2009, vol. 80, pp. 436-40.

    CAS  Google Scholar 

  17. [17] Y. Ren, L. Zhang, and C. Pistorius: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2281-92.

    Article  Google Scholar 

  18. [18] K. Gove, and J. Charles: Metals Technol., 1974, vol. 1, pp. 425-31.

    Article  Google Scholar 

  19. [19] T. Baker, K. Gave, and J. Charles: Metals Technol., 1976, vol. 3, pp. 183-93.

    Article  Google Scholar 

  20. [20] D. Ladutkin, E. Korte, M. Bleymehl, C. Bruch, and K. Doppler: Bearing Steel Technol., 2017, vol. 11, pp. 48-62.

    Google Scholar 

  21. [21] C. Elango, S. Yu, K. Naoya, M. Goro, and F. Tadashi: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 4111–26.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Natural Science Foundation of China (Grant Nos. U1860206, 51725402, 51874032), the High Steel Center (HSC) at Yanshan University and University of Science and Technology Beijing, and Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials (ICSM) at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifeng Zhang, Ying Ren or Zushu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 8, 2020; accepted February 10, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, L., Ren, Y. et al. Effect of Thermal History on the Deformation of Non-metallic Inclusions During Plain Strain Compression. Metall Mater Trans B 52, 1200–1206 (2021). https://doi.org/10.1007/s11663-021-02116-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02116-7

Navigation