Skip to main content
Log in

Investigation on Slag–Metal-Inclusion Multiphase Reactions During Electroslag Remelting of Die Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Experimental and theoretical studies have been carried out to investigate the effects of slag composition on the MgO·Al2O3 inclusion in ingot during the electroslag remelting (ESR) process with a focus on developing a mass-transfer model to understand the evolution mechanism of MgO·Al2O3 inclusion. H13 die steel was used as the electrode and remelted with two different kinds of slags by using a 30-kg ESR furnace. The inclusion compositions and contents of magnesium, silicon, and aluminum along the axial direction of product ingots were analyzed. On the basis of the unreacted core model as well as the penetration and film theories, the theoretical model developed in this work well elucidates the kinetics of slag–metal-inclusion reactions revealing the mechanism of inclusion evolution during the ESR process. The calculation results obtained from the model agree well with the experimental results. The model indicates that the inclusions of the outer MnS layer, which surrounds the MgO·Al2O3 core in the electrode, are disintegrated and removed during the metal film formation process at the tip of the electrode in the ESR furnace. The more CaO there is in the slag, the higher the aluminum and magnesium in the ingot and the lower the silicon. The concentration of MgO in the MgO·Al2O3 inclusion increases with the increase of CaO/SiO2 in the slag. The aluminum in the electrode has little effect on the MgO·Al2O3 inclusion compositions in the final product ingots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. * INCONEL 718 is a trademark of Special Metals Corporation…

Abbreviations

\( J_{\text{M}} \) :

Mass-transfer flux of element M

\( D_{\text{M}} \) :

Diffusion coefficient of M in steel

\( k_{\text{MO}} \) :

Mass-transfer coefficient of MOn in slag

\( k_{\text{M}}^{\varTheta } \) :

Comprehensive mass-transfer coefficient

\( \rho_{\text{m}} \) :

Density of liquid steel

\( w_{{ [ {\text{M]}}}} \) :

Average mass fraction of element M in steel

\( w_{{ ( {\text{MO}}_{n} )}}^{\text{o}} \) :

Initial mass fraction of MOn in slag

\( w_{{ ( {\text{MO}}_{n} )}} \) :

Average mass fraction of MOn in slag

\( \Delta w_{{ [ {\text{M]}}}} \) :

Mass fraction difference of M during the reaction

\( {\text{M}}_{\text{M}} \) :

Molar weight of element M

\( K_{\text{M}} \) :

Thermodynamic equilibrium constant

\( L_{\text{S}} \) :

Distribution ratio of sulfur

\( a_{{ [ {\text{M]}}}}^{ *} \) :

Activity of element M at the slag–metal interface

\( a_{{ ( {\text{MO}}_{n} )}}^{ *} \) :

Activity of MOn at the slag–metal interface

\( f_{{ [ {\text{M]}}}}^{{}} \) :

Activity coefficient of M in steel

\( X_{{{\text{MO}}_{n} }}^{{}} \) :

Mole fraction of MOn in slag

\( A \) :

Area of the slag–metal interface

\( V_{\text{S}} \) :

Volume of slag in the ESR furnace

\( a_{{ [ {\text{O]}}}}^{ * *} \) :

Activity of [O] at the metal-inclusion interface

\( r_{i} \) :

Radius of the MgO·Al2O3 core inclusion

\( r_{\text{m}} \) :

Radius of the molten steel–inclusion reaction

\( N_{{{\text{MO}}_{\text{n}} }} \) :

Mass action concentration of MOn in slag

\( D_{\text{MO}} \) :

Diffusion coefficient of MOn in slag

\( k_{\text{M}} \) :

Mass-transfer coefficient of M in steel

\( \tau \) :

Reaction time of the fluid particle

\( \rho_{\text{s}} \) :

Density of liquid slag

\( w_{{ [ {\text{M]}}}}^{ *} \) :

Mass fraction of element M at the interface

\( w_{{ [ {\text{M]}}}}^{\text{o}} \) :

Initial mass fraction of element M in steel

\( w_{{ ( {\text{MO}}_{\text{n}} )}}^{ *} \) :

Mass fraction of MOn at the interface

\( \Delta w_{{ ( {\text{MO}}_{\text{n}} )}} \) :

Mass fraction difference of MOn in slag

\( {\text{M}}_{{{\text{MO}}_{\text{n}} }} \) :

Molar weight of component MOn

\( \varOmega_{\text{M}} \) :

Apparent equilibrium constant

\( C \) :

Total molar number of 100 g slag

\( a_{{ [ {\text{O]}}}}^{ *} \) :

Activity of [O] at the slag–metal interface

\( e_{i}^{j} \) :

First interaction coefficient in steel

\( \gamma_{{{\text{MO}}_{\text{n}} }} \) :

Activity coefficient of MOn in slag

\( t_{\text{time}} \) :

ESR remelting time

\( W_{\text{m}} \) :

Volume remelting velocity during the ESR process

\( V_{\text{m}} \) :

Volume of reaction liquid steel

\( w_{{ [ {\text{M]}}}}^{ * *} \) :

Mass fraction of M at the metal-inclusion interface

\( C_{{ [ {\text{M]}}}}^{ * *} \) :

Molar fraction of M at the metal-inclusion interface

\( r \) :

Radius of the MnS layer inclusion

References

  1. 1.Z.H. Jiang, D. Hou, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1465–74.

    Article  Google Scholar 

  2. 2.C.B. Shi and J.H. Park: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1139–47.

    Article  Google Scholar 

  3. 3.C.B. Shi, H. Wang, and J. Li: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1675–89.

    Article  Google Scholar 

  4. 4.C.B. Shi, D.L. Zheng, B.S. Guo, J. Li, and F. Jiang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3390–3402.

    Article  Google Scholar 

  5. 5.C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, and X.L. Sun: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 378–89.

    Article  Google Scholar 

  6. 6.D. Hou, Z.H. Jiang, Y.W. Dong, W. Gong, Y.L. Cao, and H.B. Cao: ISIJ Int., 2017, vol. 57 (8), pp. 1400–09.

    Article  CAS  Google Scholar 

  7. 7.N. Verma, M. Lind, P.C. Pistorius, and R.J. Fruehan: Iron Steel Technol., 2010, vol. 7 (7), pp. 189–97.

    Google Scholar 

  8. 8.Y.W. Dong, Z.H. Jiang, Y.L. Cao, A. Yu, and D. Hou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1315–24.

    Article  Google Scholar 

  9. 9.X. Shi, S.C. Duan, W.S. Yang, M.T. Mao, H.J. Guo, and J. Guo: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 3072–87.

    Article  Google Scholar 

  10. 10.H. Wang, J. Li, C.B. Shi, Y.F. Qi, and Y.X. Dai: ISIJ Int., 2019, vol. 59, pp. 828–38.

    Article  CAS  Google Scholar 

  11. 11.Q. Wang, R.T. Wang, Z. He, G.Q. Li, B.K. Li, and H.B. Li: Int. J. Heat Mass Transfer, 2018, vol. 125, pp. 1333–44.

    Article  Google Scholar 

  12. 12.A. Harada, N. Maruoka, H. Shibata, and S.Y. Kitamura: ISIJ Int., 2013, vol. 53 (12), pp. 2110–17.

    Article  CAS  Google Scholar 

  13. 13.A. Harada, N. Maruoka, H. Shibata, and S.Y. Kitamura: ISIJ Int., 2013, vol. 53 (12), pp. 2118–25.

    Article  CAS  Google Scholar 

  14. 14.A. Harada, N. Maruoka, H. Shibata, M. Zeze, N. Asahara, F.X. Huang, and S.Y. Kitamura: ISIJ Int., 2014, vol. 54 (11), pp. 2569–77.

    Article  CAS  Google Scholar 

  15. 15.J.H. Shin, Y.S. Chung, and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 46–59.

    Article  Google Scholar 

  16. A. Galindo: Master’s Thesis, McMaster University, Hamilton, ON, Canada, Sept. 2015.

  17. 17.Y. Tabatabaei, K.S. Coley, G.A. Irons, and S. Sun: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2022–37.

    Article  Google Scholar 

  18. 18.G. Okuyama, K. Yamaguchi, S. Takeuchi, and K. I. Sorimachi: ISIJ Int., 2000, vol. 40, pp. 121–28.

    Article  CAS  Google Scholar 

  19. 19.D. Hou, Z.H. Jiang, Y.W. Dong, Y. Li, W. Gong, and F.B. Liu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1885–95.

    Article  Google Scholar 

  20. 20.G. Pateisky: J. Vac. Sci. Technol., 1972, vol. 9 (6), pp. 1323–18.

    Article  Google Scholar 

  21. 21.Z.Y. Deng and M.Y. Zhu: ISIJ Int., 2013, vol. 53 (3), pp. 450–58.

    Article  CAS  Google Scholar 

  22. 22.Wei Jihe: Chin. J. Met. Sci. Technol., 1989, vol. 5, pp. 245–35.

    Google Scholar 

  23. 23.X.M. Yang, C.B. Shi, M. Zhang, and G.M. Chai: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1150–80.

    Article  Google Scholar 

  24. 24.X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 951–2011.

    Article  Google Scholar 

  25. 25.The Japan Society for the Promotion of Science: The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, NY, 1988.

    Google Scholar 

  26. 26.A. Karasev and H. Suito: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 257–49.

    Google Scholar 

  27. 27.J.H. Park, S.B. Lee, D.S. Kim, and J.J. Pak: ISIJ Int., 2009, vol. 49 (3), pp. 337–42.

    Article  CAS  Google Scholar 

  28. 28.C.J. Xiang: Chart Data Manual for Steelmaking, Metallurgical Industry Press, Beijing, 1984, p. 662.

    Google Scholar 

  29. 29.R.D. Morales, H.H. Rodriguez, G.P. Garnica, and J.A. Romero: ISIJ Int., 1997, vol. 37 (11), pp. 1072–80.

    Article  CAS  Google Scholar 

  30. 30.M.E. Fraser and A. Mitchell: Ironmak. Steelmak., 1976, vol. 3 (5), pp. 279–87.

    CAS  Google Scholar 

  31. Q.F. Shu, V.V. Visuri, T. Alatarvas, and T. Fabritius: Metall. Mater. Trans. B, 2020, vol. 51B, p. 1. https://doi.org/10.1007/s11663-020-01955-0.

    Article  Google Scholar 

  32. 32.Y.M. Won and B.G. Thomas: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1755–67.

    Article  CAS  Google Scholar 

  33. J. Zeng, C.Y. Zhu, W.L. Wang, and X. Li: Metall. Mater. Trans. B, 2020, vol. 51B, p. 1. https://doi.org/10.1007/s11663-020-01946-1.

    Article  CAS  Google Scholar 

  34. 34.Y. Ono and S. Ishitobi: Trans. ISIJ Int., 1975, vol. 15, pp. 262–69.

    Article  Google Scholar 

  35. 35.B. Li, X. Shi, H.J. Guo, and J. Guo: Materials, 2019, vol. 12, p. 1463.

    Article  CAS  Google Scholar 

  36. 36.K. Fujii, T. Nagasaka, and M. Hino: ISIJ Int., 2000, vol. 40 (11), pp. 1059–66.

    Article  CAS  Google Scholar 

  37. 37.Y. Tabatabaei, K.S. Coley, G.A. Irons, and S. Sun: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 375–87.

    Article  Google Scholar 

  38. 38.D. Hou, Z.H. Jiang, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Ironmak. Steelmak., 2016, vol. 43 (7), pp. 517–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Nature Science Foundation of China through Grant Nos. 51874203, 51804205, and U1860205. This project is also supported by the China Postdoctoral Science Foundation through Grant No. 7131704818 and the Jiangsu Science and Technology Foundation through Grant No. 18KJB450002.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian-Peng Qu or Hui-Hua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 15, 2020; accepted October 31, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, D., Wang, DY., Jiang, ZH. et al. Investigation on Slag–Metal-Inclusion Multiphase Reactions During Electroslag Remelting of Die Steel. Metall Mater Trans B 52, 478–493 (2021). https://doi.org/10.1007/s11663-020-02032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02032-2

Navigation