Skip to main content
Log in

Evolution and Formation of Non-metallic Inclusions During Electroslag Remelting of a Heat-Resistant Steel for Ultra-supercritical Power Plants

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This work aims to clarify the evolution and formation mechanisms of non-metallic inclusions during protective argon gas atmosphere electroslag remelting (ESR) of a low-aluminum 9 mass pctCr heat-resistant steel. The pickup degree of both boron and aluminum in liquid steel during protective argon gas atmosphere ESR was lowered with increasing the SiO2 content of the slag through inhibiting steel–slag reactions. A kinetic model for describing and predicting oxide inclusion removal by slag adsorption was developed. The oxide inclusions from the steel electrode (quaternary MnO-SiO2-Al2O3-CaO) were fully removed through dissociating into their specific chemical species in liquid steel in parallel with absorbing those undissociated inclusions into molten slag before liquid metal droplets enter into the liquid metal pool. The critical sizes of the oxide inclusions through different removal ways in the ESR process were determined. A part of patch-type MnS inclusions was dissociated into soluble sulfur and manganese in liquid steel, whereas the others dissolved into oxide inclusions during the ESR. The inclusions in the liquid metal pool and ingots are the newly born Al2O3 (around 80 pct in number fraction) and CaO-Al2O3. The formation of oxide inclusions during the cooling and solidification of liquid steel leads to an increase in both the size and number density of inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. T.U Kern, K.H. Mayer, B. Donth, G. Zeiler, and A. DiGianfrancesco: in Proc. 9th Liege COST Conf. Mater. Adv. Power Eng. 2010, 2010, pp. 29–38.

  2. F. Abe, M. Tabuchi, H. Semba, M. Yoshizawa, N. Komai, and A. Fujita: in Proc. 5th Int. Conf. on Advances in Materials Technology for Fossil Power Plants, 2007, pp. 92–106.

  3. P. Yan, Z. Liu, H. Bao, Y. Weng, and W. Liu: Mater. Sci. Eng. A, 2013, vol. 588, pp. 22–28.

    Article  CAS  Google Scholar 

  4. Q. Li, Z.Z. Chen, X.L. Jiang, Z.D. Liu, and L. Zuo: Iron steel, 2021, vol. 56, pp. 40–49. (in Chinese).

    CAS  Google Scholar 

  5. E. Plesiutschnig, C. Beal, S. Paul, G. Zeiler, S. Mitsche, and C. Sommitsch: Mater. Sci. Forum, 2014, vol. 783–786, pp. 1867–871.

    Article  CAS  Google Scholar 

  6. V. Vicario, T. Brambilla, and M. Colnaghi: in Proc. 19th Int. Forgemasters Meeting, 2014, pp. 328-32.

  7. G. Zeiler, R. Bauer, and A. Putschoegl: Metall. Ital., 2010, vol. 6, pp. 33–40.

    Google Scholar 

  8. D.S. Kim, G.J. Lee, M.B. Lee, J.I. Hur, and J.W. Lee: in Proc. 2015 Int. Symp. on Liquid Metal Processing and Casting, 2015, pp. 43–52.

  9. M. Knabl, K. Eynatten, M. Kubin, A. Scheriau, and H. Holzgruber: BHM Berg-und Hüttenmännische Monatshefte, 2018, vol. 163, pp. 355–60.

    Article  Google Scholar 

  10. A. Benaarbia, X. Xu, W. Sun, A.A. Becker, and S. Osgerby: Int. J. Fatigue, 2020, vol. 131, 105270.

    Article  CAS  Google Scholar 

  11. D.S. Kim, S.K. Jo, K.R. Lee, S.T. Kang, and J.T. Kim: AISTech 2006 Proceedings, 2006, pp. 561–71.

  12. A.D. Gianfrancesco, L. Cipolla, M. Paura, S. Tiberi Vipraio, D. Venditti, S.Neri, and M. Calderini: in International Conference on Advances in Materials Technology for Fossil Power Plants, 2010, pp. 342–60.

  13. L. Li, R. MacLachlan, M.A.E. Jepson, and R. Thomson: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3411–18.

    Article  CAS  Google Scholar 

  14. F. Abe: Mater. Sci. Eng. A, 2009, vol. 510–511, pp. 64–69.

    Article  CAS  Google Scholar 

  15. J. Ba, J. Gao, S. Bo, and Q. Yang: Heavy Casting and Forging, 2018, (3), pp. 1–7.

  16. C.B. Shi, H. Wang, and J. Li: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1675–89.

    Article  CAS  Google Scholar 

  17. C.B. Shi, J. Li, J.W. Cho, F. Jiang, and I.H. Jung: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2110–20.

    Article  CAS  Google Scholar 

  18. J. Fedko and M. Krucinski: Ironmaking Steelmaking, 1989, vol. 16, pp. 116–22.

    CAS  Google Scholar 

  19. E.Y. Kolpishon, A.N. Mal’ginov, A.N. Romashkin, V.A. Durynin, S.Y. Afanas’ev, E.V. Shitov, L.T. Afanas’eva, and Y.M. Batov: Russian Metallurgy (Metally), 2010, vol. 2010, pp. 489–93.

  20. E.M. O’Hara, B. Phelan, S. Osgerby, R.A. Barrett, R. Raghavendra, S.B. Leen, and N.M. Harrison: Materialia, 2020, vol. 12, 100683.

    Article  CAS  Google Scholar 

  21. M. Banaszkiewicz: Int. J. Fatigue, 2018, vol. 113, pp. 311–23.

    Article  Google Scholar 

  22. E.M. O’Hara, N.M. Harrison, B.K. Polomski, R.A. Barrett, and S.B. Leen: Fatigue Fract. Eng. Mater. Struct., 2018, vol. 41, pp. 2288–2304.

    Article  CAS  Google Scholar 

  23. X. Xu, A. Benaarbia, D.J. Allen, M.A.E. Jepson, and W. Sun: Mater. Sci. Eng. A, 2020, vol. 791, 139546.

    Article  CAS  Google Scholar 

  24. C.B. Shi, S.J. Wang, J. Li, and J.W. Cho: J. Iron Steel Res. Int., 2021, vol. 28, pp. 1483–1503.

    Article  Google Scholar 

  25. T.J. Wen, Q. Ren, L.F. Zhang, J.J. Wang, Y. Ren, J. Zhang, W. Yang, and A.J. Xu: Steel Res. Int., 2021, vol. 92, p. 2000629.

    Article  CAS  Google Scholar 

  26. X.Y. Gao, L. Zhang, X.H. Qu, Y.F. Luan, and X.W. Chen: Metall. Res. Technol., 2020, vol. 117, pp. 501–09.

    Article  CAS  Google Scholar 

  27. C.B. Shi: ISIJ Int., 2020, vol. 60, pp. 1083–96.

    Article  CAS  Google Scholar 

  28. A. Fujio, H. Kutsumi, H. Haruyama, and H. Okubo: Corros. Sci., 2017, vol. 114, pp. 1–9.

    Google Scholar 

  29. A. Fujio: Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, in: Augusto Di Gianfrancesco (Eds.), Woodhead Publishing Limited, Cambridge 2017, pp. 323–74 (Chapter 10).

  30. G.K. Sigworth and J.F. Elliott: Met. Sci., 1974, vol. 8, pp. 298–310.

    Article  CAS  Google Scholar 

  31. C.B. Shi, Y. Huang, J.X. Zhang, J. Li, and X. Zheng: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 18–29.

    Article  CAS  Google Scholar 

  32. W. Holzgruber, K. Petersen, and P. E. Schneider: [in] Trans. Int. Vacuum Metall. Conf., 1968, pp. 499–523.

  33. E. Plöckinger: J. Iron Steel Inst., 1973, vol. 211, pp. 533–41.

    Google Scholar 

  34. C.B. Shi: Behaviour and Control Technique of Oxygen and Inclusions during Protective Atmosphere Electroslag Remelting Process [Dissertation], University of Science and Technology Beijing, Beijing, 2012, pp. 5

  35. J.H. Wei and A. Mitchell: Acta Metall. Sin., 1984, vol. 20, pp. 261–79.

    Google Scholar 

  36. A. Mitchell, J. Szekely, and J.F. Elliott: Electroslag Refining, The Iron and Steel Institute, London, 1973, pp. 3–15.

    Google Scholar 

  37. M.E. Fraser and A. Mitchell: Ironmak. Steelmak., 1976, vol. 3, pp. 279–87.

    CAS  Google Scholar 

  38. S.J. Li, G.G. Cheng, L. Yang, L. Chen, Q.Z. Yan, and C.W. Li: ISIJ Int., 2017, vol. 57, pp. 713–22.

    Article  CAS  Google Scholar 

  39. S.C. Duan, M.J. Lee, D.S. Kim, and J.H. Park: J. Mater. Res. Technol., 2021, vol. 17, pp. 574–85.

    Article  CAS  Google Scholar 

  40. C. Wagner: Thermodynamics of Alloys, Addison-Wesley Press, Cambridge, 1952, p. 51.

    Google Scholar 

  41. H. Ohta and H. Suito: Metall. Mater. Trans. B, 1996, vol. 27, pp. 943–53.

    Article  Google Scholar 

  42. H. Ono-Nakazato, K. Taguchi, R. Maruo, and T. Usui: ISIJ Int., 2007, vol. 47, pp. 365–69.

    Article  CAS  Google Scholar 

  43. The Japan Society for the Promotion of Science: The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, 1988.

    Google Scholar 

  44. C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, and H. Ren: Steel Res. Int., 2012, vol. 83, pp. 472–86.

    Article  CAS  Google Scholar 

  45. P.P. Evseyev and A.F. Filippov: Izvest. Akad. Nauk SSSR Metally, 1968, vol. 3, pp. 41–43.

    Google Scholar 

  46. C.B. Shi and J.H. Park: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1139–47.

    Article  CAS  Google Scholar 

  47. Y.W. Dong, Z.H. Jiang, Y.L. Cao, A. Yu, and D. Hou: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1315–24.

    Article  CAS  Google Scholar 

  48. R.G. Baligidad, U. Prakash, V.R. Rao, P.K. Rao, and N.B. Ballal: Ironmak. Steelmak., 1994, vol. 21, pp. 324–31.

    CAS  Google Scholar 

  49. Y. Li, C.Y. Chen, Z.H. Jiang, M. Sun, H. Hu, and H.B. Li: ISIJ Int., 2018, vol. 58, pp. 1232–41.

    Article  CAS  Google Scholar 

  50. J. Elfsberg and T. Matsushita: Steel Res. Int., 2011, vol. 82, pp. 404–14.

    Article  CAS  Google Scholar 

  51. L.A. Girifalco and R.J. Good: J. Phys. Chem., 1957, vol. 61, pp. 904–09.

    Article  CAS  Google Scholar 

  52. C. Xuan, E.S. Persson, R. Sevastopolev, and M. Nzotta: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1957–73.

    Article  CAS  Google Scholar 

  53. K. Nakajima: Tetsu–to–Hagané, 1994, vol. 80, pp. 599–604.

    Article  CAS  Google Scholar 

  54. K. Nakajima: Tetsu–to–Hagané, 1994, vol. 80, pp. 383–88.

    Article  CAS  Google Scholar 

  55. J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1838–47.

    Article  CAS  Google Scholar 

  56. B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 22–35.

    Article  CAS  Google Scholar 

  57. V.D. Eisenhüttenleute: Slag Atlas, 2nd ed. Woodhead Publishing Limited, Cambridge, 1995, p. 44.

    Google Scholar 

  58. Q. Wang, K.D. Squires, M. Chen, and J.B. McLaughlin: On the role of the lift force in turbulence simulations of particle deposition. Int. J. Multiph. Flow, 1997, vol. 23, pp. 749–63.

    Article  CAS  Google Scholar 

  59. K. Takahashi and S. Taniguchi: ISIJ Int., 2003, vol. 43, pp. 820–27.

    Article  CAS  Google Scholar 

  60. C.B. Shi, H.J. Guo, X.C. Chen, X.L. Sun, and J. Fu: Special Steel, 2013, vol. 34, pp. 11–15.

    Google Scholar 

  61. S.J. Li, G.G. Cheng, Z.Q. Miao, L. Chen, C.W. Li, and X.Y. Jiang: ISIJ Int., 2017, vol. 57, pp. 2148–56.

    Article  CAS  Google Scholar 

  62. H.S. Kim, H.G. Lee, and K.S. OH: Metall Mater. Trans. A, 2001, vol. 32A, pp. 1519–25.

    Article  CAS  Google Scholar 

  63. H. Doostmohammadi, P.G. Jönsson, J. Komenda, and S. Hagman: Steel Res. Int., 2010, vol. 81, pp. 142–49.

    Article  CAS  Google Scholar 

  64. M.M. Nzotta, D. Sichen, and S. Seetharaman: ISIJ Int., 1998, vol. 38, pp. 1170–79.

    Article  CAS  Google Scholar 

  65. D.A.R. Kay and R.J. Pomfret: J. Iron Steel Inst., 1971, vol. 209, pp. 962–65.

    CAS  Google Scholar 

  66. J. Fu and J. Zhu: Acta Metall. Sin., 1964, vol. 7, pp. 250–62.

    Google Scholar 

  67. A. Mitchell: Ironmak. Steelmak., 1974, vol. 1, pp. 172–79.

    CAS  Google Scholar 

  68. E.S. Persson, A. Karasev, A. Mitchell, and P.G. Jönsson: Metals, 2020, vol. 10, pp. 1620–35.

    Article  CAS  Google Scholar 

  69. J. Fu, C. Chen, E. Chen, and Y. Wang: Acta Metall. Sin., 1979, vol. 15, pp. 44–50.

    CAS  Google Scholar 

  70. M. Choudhary and J. Szekely: Metall. Trans. B, 1980, vol. 11B, pp. 439–53.

    Article  Google Scholar 

  71. Y. Dong, Z. Hou, Z. Jiang, H. Cao, Q. Feng, and Y. Cao: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 349–60.

    Article  CAS  Google Scholar 

  72. N. Choi, K.R. Lim, Y.S. Na, U. Glatzel, and J.H. Park: J. Alloys Compd., 2018, vol. 763, pp. 546–57.

    Article  CAS  Google Scholar 

  73. S.P.T. Piva and P.C. Pistorius: Metall. Mater. Trans. B, 2021, vol. 52, pp. 6–16.

    Article  CAS  Google Scholar 

  74. C.B. Shi, X. Zheng, Z.B. Yang, P. Lan, J. Li, and F. Jiang: Met. Mater. Int., 2021, vol. 27, pp. 3603–16.

    Article  CAS  Google Scholar 

  75. Q. Chen and B. Sundman: Mater. Trans., 2002, vol. 43, pp. 551–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the assistance from Prof. Guoguang Cheng and Mr. Zhiqi Miao in conducting the model estimation of slag component activity. The financial support by the National Natural Science Foundation of China (Grant Nos. 52074027 and 51874026) and the State Key Laboratory of Advanced Metallurgy (Grant No. 41621024) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengbin Shi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Shi, C., Liang, Y. et al. Evolution and Formation of Non-metallic Inclusions During Electroslag Remelting of a Heat-Resistant Steel for Ultra-supercritical Power Plants. Metall Mater Trans B 53, 3095–3114 (2022). https://doi.org/10.1007/s11663-022-02589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02589-0

Navigation