Skip to main content
Log in

Reaction Between High Mn-High Al Steel and CaO-SiO\(_2\)-Type Molten Mold Flux: Retardation of \({{\text{Al}}_2} {{\text{O}}_3}\) Accumulation at High Al Content \(([{\text{pct Al}}]_0\) \(\ge \) 5) in Steel and Low MgO Content \((({\text{pct MgO}})_0\) \(\le \) 1.8) in Flux

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A series of steel-flux reaction experiments was conducted to elucidate the reaction mechanism between high Mn-high Al steel and CaO-\({\text{SiO}}_2\)-type molten mold flux of low MgO content \((({\text{pct MgO}})_0 = 0\) to 1.8) at 1723 K (\(1450\,^\circ \text {C}\)). Composition evolutions in the liquid steel and the molten flux during the reaction and microstructure change in the flux near the steel-flux interface were investigated by employing different experimental techniques. \(4{\underline{{\text{Al}}}} + 3({\text{SiO}}_2) = 3{\underline{\text{Si}}} + 2({{\text{Al}}_2} {{\text{O}}_3}\)) was confirmed as a major reaction in the system. It was found that rate of \({{\text{Al}}_2} {{\text{O}}_3}\) accumulation in the flux was retarded as the initial Al content in the steel (\([{\text{pct Al}}]_0\)) increased from 1 to 5 or 11, approximately. Moreover, keeping the initial content of MgO in the flux (\(({\text{pct MgO}})_0\)) < 1.8) resulted in a slower reaction rate than that with the normal MgO content (\(({\text{pct MgO}})_0 = \sim 2.5\)) reported previously, even at high Al content (\([{\text{pct Al}}]_0 = 4.6 {\text{to}} 5.8\)). From the microstructure analysis in the flux, the \({{\text{Al}}_2} {{\text{O}}_3}\)-rich zone and calcium aluminate layer were observed near the interface. A rapid increase of \({{\text{Al}}_2} {{\text{O}}_3}\) in the flux near the interface was found at the early stage of the reaction. As the reaction proceeded, however, the concentration gradients in the flux did not show noticeable changes. This suggests that mass transport in the flux was hindered by accumulation of the reaction products near the interface. The formation mechanism of the calcium aluminate layer was discussed by considering the measured flux compositions and phase diagram analysis calculated using the CALPHAD technique. Several kinetic analyses indicated that mass transport in the flux significantly affects the overall reaction rate in the high Mn-high Al steel and CaO-\({\text{SiO}}_2\)-type molten mold flux system with high Al \(([{\text{pct Al}}]_0 \ge 5\)) and low MgO content \((({\text{pct MgO}})_0 \le 1.8\)). The formation of a calcium aluminate layer in the low-MgO flux was beneficial to retarding the reaction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The present study employed an alumina crucible, which could even increase (pct \({{\text{Al}}_2} {{\text{O}}_3}\)) compared to that of the previous study which employed a magnesia crucible.[12]

References

  1. S.-H. Kim, H. Kim, and N. J. Kim: Nature, 2015, vol. 518, pp. 77–79.

    Article  CAS  Google Scholar 

  2. S.-W. Park, J. Y. Park, K. M. Cho, J. H. Jang, S.-J. Park, J. Moon, T.-H. Lee, and J.-H. Shin: Met. Mater. Int., 2019, vol. 25, pp. 683–696.

    Article  CAS  Google Scholar 

  3. J. Lee, S. Park, H. Kim, S.-J. Park, K. Lee, M.-Y. Kim, P. P. Madakashira, and H. N. Han: Met. Mater. Int., 2018, vol. 24, pp. 702–710.

    Article  CAS  Google Scholar 

  4. H. Kim, D.-W. Suh, and N. J. Kim: Sci.Tech. Adv. Mater., 2013, vol. 14, p. 014205.

    Article  Google Scholar 

  5. S. Kim, D. Jeong, and H. Sung: Met. Mater. Int., 2018, vol. 24, pp. 1–14.

    Article  CAS  Google Scholar 

  6. K. Blazek, H. Yin, G. Skoczlas, M. McClymonds, and M. Frazee: Proc. of AISTech 2011, Association for Iron and Steel Technology, 2011 pp. 1577–86.

  7. J.-W. Cho, K. Blazek, M. Frazee, H. Yin, J. H. Park, and S.-W. Moon: ISIJ Int., 2013, vol. 53, pp. 62–70.

    Article  Google Scholar 

  8. W. Wang, B. Lu, and D. Xiao: Metall. Mater. Trans. B, 2016, vol. 47, pp. 384–389.

    Article  CAS  Google Scholar 

  9. S. He, Z. Li, Z. Chen, T. Wu, and Q. Wang: Steel Res. Int., 2019, vol. 90, p. 1800424.

    Article  Google Scholar 

  10. X. Fu, G. Wen, Q. Liu, P. Tang, J. Li, and W. Li: Steel Res. Int., 2015, vol. 86, pp. 110–120.

    Article  CAS  Google Scholar 

  11. H. Shao, E. Gao, W. Wang, and L. Zhang: J. Am. Ceram. Soc., 2019, vol. 102, pp. 4440–4449.

    Article  CAS  Google Scholar 

  12. M.-S. Kim, S.-W. Lee, J.-W. Cho, M.-S. Park, H.-G. Lee, and Y.-B. Kang: Metall. Mater. Trans. B, 2013, vol. 44, pp. 299–308.

    Article  CAS  Google Scholar 

  13. Y.-B. Kang, M.-S. Kim, S.-W. Lee, J.-W. Cho, M.-S. Park, and H.-G. Lee: Metall. Mater. Trans. B, 2013, vol. 44, pp. 309–316.

    Article  CAS  Google Scholar 

  14. M.-S. Kim, M.-S. Park, S.-E. Kang, J.-K. Park, and Y.-B. Kang: ISIJ Int., 2018, vol. 58, pp. 686–695.

    Article  CAS  Google Scholar 

  15. M.-S. Kim and Y.-B. Kang: Calphad, 2018, vol. 61, pp. 105–115.

    Article  CAS  Google Scholar 

  16. M.-S. Kim, M.-S. Park, and Y.-B. Kang: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2077–2082.

    Article  CAS  Google Scholar 

  17. J. Yang, J. Zhang, O. Ostrovski, C. Zhang, and D. Cai: Metall. Italiana, 2019, vol. 1, pp. 12–19.

    Google Scholar 

  18. C. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, K. Hack, I. Jung, Y. Kang, J. Melançon, A. Pelton, C. Robelin, and S. Petersen: Calphad, 2009, vol. 33, pp. 295–311.

    Article  CAS  Google Scholar 

  19. C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, A. E. Gheribi, K. Hack, I. H. Jung, Y. B. Kang, J. Melançon, A. D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. Van Ende: Calphad, 2016, vol. 54, pp. 35–53.

    Article  CAS  Google Scholar 

  20. S.  and K. Hack

    Article  CAS  Google Scholar 

  21. Q. Wang, S. Qiu, and P. Zhao: Metall. Mater. Trans. B, 2012, vol. 43, pp. 424–430.

    Article  CAS  Google Scholar 

  22. Y. Chung and A. Cramb: Metall. Mater. Trans. B, 2000, vol. 31, pp. 957–971.

    Article  Google Scholar 

  23. M. A. Rhamdhani, K. S. Coley, and G. A. Brooks: Metall. Mater. Trans. B, 2005, vol. 36, pp. 219–227.

    Article  Google Scholar 

  24. M. A. Rhamdhani, G. A. Brooks, and K. S. Coley: Metall. Mater. Trans. B, 2006, vol. 37, pp. 1087–1091.

    Article  Google Scholar 

  25. A. N. Assis, J. Warnett, S. Spooner, R. J. Fruehan, M. A. Williams, and S. Sridhar: Metall. Mater. Trans. B, 2015, vol. 46, pp. 568–576.

    Article  CAS  Google Scholar 

  26. R. Roscoe: British J. Applied Phys., 1952, vol. 3, pp. 267- 269.

    Article  Google Scholar 

  27. L. Thu Hoai and J. Lee: Metall. Mater. Trans. B, 2011, vol. 42, pp. 925–927.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by POSCO, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Bae Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 25, 2020, accepted September 6, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, MS., Park, MS., Jung, SH. et al. Reaction Between High Mn-High Al Steel and CaO-SiO\(_2\)-Type Molten Mold Flux: Retardation of \({{\text{Al}}_2} {{\text{O}}_3}\) Accumulation at High Al Content \(([{\text{pct Al}}]_0\) \(\ge \) 5) in Steel and Low MgO Content \((({\text{pct MgO}})_0\) \(\le \) 1.8) in Flux. Metall Mater Trans B 51, 3067–3078 (2020). https://doi.org/10.1007/s11663-020-01972-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01972-z

Navigation