Skip to main content
Log in

Reviews on factors affecting fatigue behavior of high-Mn steels

  • Review Article
  • 2016 CHANGSUNG Academic Award Article
  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A variety of factors affect the fatigue behavior of high-Mn steels, which include both extrinsic (i.e., loading type, R ratio, specimen type, surface condition, temperature, and environment) and intrinsic (i.e., chemical composition, grain size, microstructure, stacking fault energy) factors. Very often, the influence of extrinsic factors on the fatigue behavior is even greater than that of intrinsic factors, misleading the interpretation of fatigue data. The metallurgical factors influence the initiation and propagation behaviors of fatigue by altering the characteristics of slip that is prerequisite for fatigue damage accumulation. It is however not easy to separate the effect of each factor since they affect the fatigue behavior of high-Mn steels in complex and synergistic way. In this review, the fatigue data of high-Mn steels are summarized and the factors complicating the interpretation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Fonstein, Advanced High Strength Sheet Steel, p. 369, Springer International Publishing, Switzerland (2015).

    Book  Google Scholar 

  2. O. Bouaziz, S. Allain, C. P. Scott, P. Cugy, and D. Barbier, Curr. Opin. Solid St. M. 15, 141 (2011).

    Article  Google Scholar 

  3. J. G. Sevillano, Scripta Mater. 60, 336 (2009).

    Article  Google Scholar 

  4. F. D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, and T. Antretter, Int. J. Plasticity, 16, 723 (2000).

    Article  Google Scholar 

  5. I. Tamura, Met. Sci. 16, 245 (1982).

    Article  Google Scholar 

  6. D. T. Pierce, J. A. Jiménez, J. Bentley, D. Raabe, C. Oskay, and J. E. Wittig, Acta Mater. 68, 238 (2014).

    Article  Google Scholar 

  7. O. Grässel, G. Frommeyer, C. Derder, and H. Hofmann, J. Physique IV 7, p. 383, France (1997).

    Google Scholar 

  8. S. Allain, J. P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, Mat. Sci. Eng. A 387, 158 (2004).

    Article  Google Scholar 

  9. A. Dumay, J. P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Mat. Sci. Eng. A 483, 184 (2008).

    Article  Google Scholar 

  10. J. E. Wittig, M. Pozuelo, J. A. Jiménez, and G. Frommeyer, Steel Res. Int. 80, 66 (2009).

    Google Scholar 

  11. J. A. Jiménez and G. Frommeyer, Mater. Charact. 61, 221 (2010).

    Article  Google Scholar 

  12. P. Yang, Q. Xie, L. Meng, H. Ding, and Z. Tang, Scripta Mater. 55, 629 (2006).

    Article  Google Scholar 

  13. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, Mat. Sci. Eng. A 527, 3552 (2010).

    Article  Google Scholar 

  14. I. Gutierrez-Urrutia and D. Raabe, Scripta Mater. 66, 992 (2012).

    Article  Google Scholar 

  15. O. Grassel, L. Kruger, G. Frommeyer, and L. W. Meyer, Int. J. Plasticity 16, 1391 (2000).

    Article  Google Scholar 

  16. O. Bouaziz and N. Guelton, Mat. Sci. Eng. A 319-321, 246 (2001).

    Article  Google Scholar 

  17. S. Allain, J. P. Chateau, and O. Bouaziz, Mat. Sci. Eng. A 387-389, 143 (2004).

    Article  Google Scholar 

  18. K. T. Park, K. G. Jin, S. H. Han, S. W. Hwang, K. Y. Choi, and C. S. Lee, Mat. Sci. Eng. A 527, 3651 (2010).

    Article  Google Scholar 

  19. Y. Higo, A. C. Pickard, and J. F. Knott, Met. Sci. 15-16, 233 (1981).

    Article  Google Scholar 

  20. R. E. Stoltz and J. B. Vander Sande, Metall. Mater. Trans. A 11, 1033 (1980).

    Article  Google Scholar 

  21. J. K. Choi, S. G. Lee, Y. H. Park, I. W. Han, and J. W. Morris, Jr., Proc. of the Twenty-Second International Offshore and Polar Engineering Conference, p. 17, The International Society of Offshore and Polar Engineers (ISOPE), Rhodes, Greece (2012).

    Google Scholar 

  22. B. C. De Cooman, L. Chen, H. S. Kim, Y. Estrin, S. K. Kim, and H. Voswinckel, Microstructure and Texture in Steels (eds. A. Haldar, S. Suwas, and D. Bhattacharjee), p. 165, Springer, London, UK (2009).

  23. ASTM Standard A1106 / A1106M, Standard Specification for Pressure Vessel Plate, Alloy Steel, Austenitic High Manganese for Cryogenic Application, Vol. 01.04, ASTM Standards, USA (2017).

  24. S. Curtze and V. T. Kuokkala, Acta Mater. 58, 5129 (2010).

    Article  Google Scholar 

  25. S. Vercammen, B. Blanpain, B. C. De Cooman, and P. Wollants, Acta Mater. 52, 2005 (2004).

    Article  Google Scholar 

  26. G. Dini, A. Najafizadeh, R. Ueji, and S. M. Monir-Vaghefi, Mater. Design 31, 3395 (2010).

    Article  Google Scholar 

  27. D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert, Mat. Sci. Eng. A 500, 196 (2009).

    Article  Google Scholar 

  28. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, K. Kunishige, et al. Scripta Mater. 59, 963 (2008).

    Article  Google Scholar 

  29. J. E. Jin and Y. K. Lee, Mat. Sci. Eng. A 527, 157 (2009).

    Article  Google Scholar 

  30. B. M. Ayyub, I. A. Assakkaf, D. P. Kihl, and M. W. Siev, Nav. Eng. J. 114, 113 (2002).

    Article  Google Scholar 

  31. T. Xu and R. G. Bea, J. Offshore Mech. Arct. 119, 96 (1997).

    Article  Google Scholar 

  32. C. Guedes Soares and T. Moan, Mar. Struct. 4, 295 (1991).

    Article  Google Scholar 

  33. P. Philip, J. Taillard, E. Klein, P. Sagaspe, A. Charles, B. Bioulac, et al. J. Psychosom. Res. 55, 197 (2003).

    Article  Google Scholar 

  34. O. Asi, Eng. Fail. Anal. 13, 1293 (2006).

    Article  Google Scholar 

  35. A. S. Hamada, L. P. Karjalainen, A. Ferraiuolo, J. Gil Sevillano, F. DE Las Cuevas, M. Reis, et al. Metall. Mater. Trans. A 41, 1102 (2010).

    Article  Google Scholar 

  36. A. S. Hamada, L. P. Karjalainen, and J. Puustinen, Mat. Sci. Eng. A 517, 68 (2009).

    Article  Google Scholar 

  37. T. Niendorf, F. Rubitschek, H. J. Maier, J. Niendorf, H. A. Richard, and A. Frehn, Mat. Sci. Eng. A 527, 2412 (2010).

    Article  Google Scholar 

  38. B. Wang, Z. J. Zhang, C. W. Shao, Q. Q. Duan, J. C. Pang, Z. F. Zhang, et al. Metall. Mater. Trans. A 46, 3317 (2015).

    Article  Google Scholar 

  39. B. Wang, P. Zang, Q. Q. Duan, Z. J. Zhang, H. J. Yang, Z. F. Zhang, et al. Mat. Sci. Eng. A 679, 258 (2017).

    Article  Google Scholar 

  40. S. S. Kim, M. H. Rhee, and C. S. Lee, Met. Mater. Int. 2, 37 (1996).

    Article  Google Scholar 

  41. C. S. Lee, S. S. Kim, and K. S. Shin, Met. Mater. Int. 3, 51 (1997).

    Article  Google Scholar 

  42. S. Nogami, Y. Sato, A. Tanaka, A. Hasegawa, A. Nishmura, and H. Tanigawa, J. Nucl. Sci. Technol. 47, 47 (2010).

    Article  Google Scholar 

  43. M. R. Bayoumi and A. K. Abdellatif, Eng. Fract. Mech. 51, 861 (1995).

    Article  Google Scholar 

  44. J. K. Kwon, Y. J. Kim, S. Z. Han, M. Goto, and S. S. Kim, Met. Mater. Int. 15, 925 (2009).

    Article  Google Scholar 

  45. H. K. Sung, D. H. Jeong, T. D. Park, J. S. Lee, and S. S. Kim, Met. Mater. Int. 22, 755 (2016).

    Article  Google Scholar 

  46. D. H. Jeong, T. D. Park, J. S. Lee, and S. S. Kim, Met. Mater. Int. 21, 453 (2015).

    Article  Google Scholar 

  47. W. G. Seo, D. H. Jeong, H. K. Sung, and S. S. Kim, Mater. Charact. 124, 65 (2017).

    Article  Google Scholar 

  48. D. H. Jeong, S. G. Lee, W. K. Jang, J. K. Choi, Y. J. Kim, and S. S. Kim, Metall. Mater. Trans. A 44, 4601 (2013).

    Article  Google Scholar 

  49. W. O. Brueggeman and M. Mayer, Jr., Guides for Preventing Buckling in Axial Fatigue Tests of Thin Sheet-Metal Specimens, Technical Note No. 931, National Advisory Commit tee for Aeronautics, USA (1944).

    Google Scholar 

  50. ASTM E606, Standard Practice for Strain-Controlled Fatigue Testing, Annual Book of ASTM Standards, Vol. 03.01, ASTM International, USA (1998).

  51. ASTM E466, Standard Practice for Conduction Force Controlled Constant Amplitude Axial Fatigue Test of Metallic Materials, Annual Book of ASTM Standards, Vol. 03.01, ASTM International, USA (2002).

  52. J. C. R. Pereira, A. M. P. de Jesus, A. A. Fernandes, and G. Varelis, J. Pressure Vessel Technol. 138, 031403 (2016).

    Article  Google Scholar 

  53. B. Du, J. Yang, C. Cui, and X. Sun, Mater. Design 65, 57 (2015).

    Article  Google Scholar 

  54. L. Nian and D. Bai-ping, Int. J. Fatigue 17, 43 (1995).

    Article  Google Scholar 

  55. T. Niendorf, F. Rubitschek, H. J. Maier, and A. Frehn, Fatigue of Materials: Advances and Emergences in Understanding (ed. T. S. Srivatsan), p. 55, TMS, USA (2010).

  56. W. Li, T. Sakai, Q. Li, L. T. Lu, and P. Wang, Mat. Sci. Eng. A 528, 5044 (2011).

    Article  Google Scholar 

  57. A. Abel, Low Cycle Fatigue and Elasto-Plastic Behavior of Materials (ed. K. T. Rie), p. 610, Springer Science+Business Media B.V., Netherlands (1987).

  58. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, USA (1986).

    Google Scholar 

  59. A. S. Hamada and L. P. Karjalainen, Mat. Sci. Eng. A 527, 5715 (2010).

    Article  Google Scholar 

  60. C. S. Zheng, Q. Lei, and Y. Hong, Mech. Mater. 69, 227 (2014).

    Article  Google Scholar 

  61. R. O. Ritchie, D. L. Davidson, B. L. Boyce, J. P. Campbell, and O. Roder, Fatigue Fract. Eng. M. 22, 621 (1999).

    Article  Google Scholar 

  62. L. Susmel, R. Tovo, and P. Lazzarin, Int. J. Fatigue 27, 928 (2005).

    Article  Google Scholar 

  63. S. K. Wofie, Int. J. Fatigue 23, 829 (2001).

    Article  Google Scholar 

  64. M. R. Bayoumi and A. K. Abdellatif, Eng. Fract. Mech. 51, 861 (1995).

    Article  Google Scholar 

  65. J. Lai, H. Huang, and W. Buising, Procedia Structural Integrity 2, 1213 (2016).

    Article  Google Scholar 

  66. T. Yuri, Y. Ono, and T. Ogata, Sci. Technol. Adv. Mater. 4, 291 (2003).

    Article  Google Scholar 

  67. R. I. Stephens, A. Fatemi, R. R. Stephens, and H. O. Fuchs, Metal Fatigue in Engineering, 2nd ed., p. 98, Wiley-Interscience, USA (2000).

    Google Scholar 

  68. Y. W. Kim, G. S. Kim, S. G. Hong, and C. S. Lee, Mat. Sci. Eng. A 528, 4696 (2011).

    Article  Google Scholar 

  69. J. K. Kim, L. Chen, H. S. Kim, S. K. Kim, Y. Estrin, and B. C. De Cooman, Metall. Mater. Trans. A 40, 3147 (2009).

    Article  Google Scholar 

  70. I. Gutierrez-Urrutia and D. Raabe, Acta Mater. 59, 6449 (2011).

    Article  Google Scholar 

  71. R. G. Xiong, R. Y. Fu, Y. Su, Q. LI, X. C. Wei, and L. LI, J. Iron Steel Res. Int. 16, 81 (2009).

    Article  Google Scholar 

  72. T. Niendorf, C. Lotze, D. Canadinc, A. Frehn, and H. J. Maier, Mat. Sci. Eng. A 499, 518 (2009).

    Article  Google Scholar 

  73. M. W. Kang, Y. Aono, and H. Noguchi, Int. J. Fatigue 29, 1855 (2007).

    Article  Google Scholar 

  74. Q. Guo, Y. S. Chun, J. H. Lee, Y. U. Heo, and C. S. Lee, Met. Mater. Int. 20, 1043 (2014).

    Article  Google Scholar 

  75. D. Taylor and O. M. Clancy, Fatigue Fract. Eng. M. 14, 329 (1991).

    Article  Google Scholar 

  76. D. H. Jeong, S. G. Lee, J. Y. Yoo, J. S. Lee, and S. S. Kim, Mater. Charact. 103, 28 (2015).

    Article  Google Scholar 

  77. D. H. Jeong, H. K. Sung, T. D. Park, J. S. Lee, and S. S. Kim, Met. Mater. Int. 22, 601 (2016).

    Article  Google Scholar 

  78. D. H. Jeong, S. G. Lee, I. S. Seo, J. Y. Yoo, and S. S. Kim, Met. Mater. Int. 21, 22 (2015).

    Article  Google Scholar 

  79. D. H. Jeong, S. G. Lee, I. S. Seo, J. Y. Yoo, and S. S. Kim, Met. Mater. Int. 21, 14 (2015).

    Article  Google Scholar 

  80. Y. J. Kim, J. K. Kwon, D. H. Jeong, Y. S. Yoon, N. S. Woo, S. S. Kim, et al. Met. Mater. Int. 20, 851 (2014).

    Article  Google Scholar 

  81. Y. Murakami, T. Kanezaki, Y. Mine, and S. Matsuoka, Metall. Mater. Trans. A. 39, 1327 (2008).

    Article  Google Scholar 

  82. H. O. Madsen, S. Krenk, and N. C. Lind, Methods of Structural Safety, Courier Corporation, USA (2006).

    Google Scholar 

  83. J. K. Paik and A. K. Thayamballi, Ultimate Limit State Design of Steel-Plated Structures, John Wiley & Sons, USA (2003).

    Google Scholar 

  84. T. P. Rich and D. J. Cartwright, Case Studies in Fracture Mechanics, A045877, Army Materials and Mechanics Research Center, USA (1977).

    Google Scholar 

  85. MIL-STD-83444, Airplane Damage Tolerant Design Requirements, USAF (1974).

  86. J. A. Volpe, Damage Tolerance Assessment Handbook, Vol. 1, 1994 U.S. Department of Transportation System Center, UK (1994).

    Google Scholar 

  87. S. S. Kim, J. K. Kwon, Y. J. Kim, W. K. Jang, S. G. Lee, and J. K. Choi, Met. Mater. Int. 19, 683 (2013).

    Article  Google Scholar 

  88. D. H. Jeong, W. S. Seo, H. K. Sung, and S. S. Kim, Mater. Charact. 121, 103 (2016).

    Article  Google Scholar 

  89. Y. J. Kim, J. K. Kwon, H. J. Lee, W. K. Jang, J. K. Choi, and S. S. Kim, Metall. Mater. Trans. A 42, 986 (2011).

    Article  Google Scholar 

  90. D. H. Jung, J. K. Kwon, N. S. Woo, Y. J. Kim, M. Goto, and S. S. Kim, Metall. Mater. Trans. A 45, 654 (2014).

    Article  Google Scholar 

  91. J. C. Pang, S. X. Li, Z. G. Wang, and Z. F. Zhang, Mat. Sci. Eng. A 564, 331 (2013).

    Article  Google Scholar 

  92. T. Tsuchiyama, T. Onomoto, K. Tsuboi, and S. Takaki, Mater. Sci. Forum 638-642, 3549 (2010).

    Article  Google Scholar 

  93. M. Calcagnotto, D. Ponge, and D. Raabe, Mat. Sci. Eng. A 527, 7832 (2010).

    Article  Google Scholar 

  94. E. A. Starke, Jr. and J. C. Williams, Fracture Mechanics, ASTM STP 1020 (eds. R. P. Wei and R. P. Gangloff), p. 184, ASTM International, Philadelphia, USA (1989).

  95. J. E. King, Met. Sci. 16, 345 (1982).

    Article  Google Scholar 

  96. J. Lindigkeit, G. Terlinde, A. Gysler, and G. Lutzering, Acta Metall. 27, 1717 (1979).

    Article  Google Scholar 

  97. O. Bouaziz, S. Allain, and C. Scott, Scripta Mater. 58, 484 (2008).

    Article  Google Scholar 

  98. S. Asgari, E. El-Danaf, S. R. Kalidindi, and R. D. Doherty, Metall. Mater. Trans. A 28, 1781 (1997).

    Article  Google Scholar 

  99. I. Karaman, H. Sehitoglu, H. J. Maier, and Y. I. Chumlyakov, Acta Mater. 49, 3919 (2001).

    Article  Google Scholar 

  100. N. Tsuchida, Y. Morimoto, T. Tonan, Y. Shibata, K. Fukaura, and R. Ueji, ISIJ Int. 51, 124 (2011).

    Article  Google Scholar 

  101. J. Talonen, H. Hänninen, P. Nenonen, and G. Pape, Metall. Mater. Trans. A 36, 421 (2005).

    Article  Google Scholar 

  102. T. S. Byun, N. Hashimoto, and K. Farrell, Acta Mater. 52, 3889 (2004).

    Article  Google Scholar 

  103. E. Hornbogen, Fatigue Fract. Eng. M. 25, 785 (2002).

    Article  Google Scholar 

  104. Z. Mei and J. W. Morris, Jr., Metall. Mater. Trans. A 21, 3137 (1990).

    Article  Google Scholar 

  105. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Metall. Mater. Trans. A 40, 3076 (2009).

    Article  Google Scholar 

  106. X. Yuan, L. Chen, Y. Zhao, H. Di, and F. Zhu, Procedia Eng. 81, 143 (2014).

    Article  Google Scholar 

  107. A. Di Schino, M. Barteri, and J. M. Kenny, J. Mater. Sci. 38, 4725 (2003).

    Article  Google Scholar 

  108. E. El-Danaf, S. R. Kalidindi, and R. D. Doherty, Metall. Mater. Trans. A 30, 1223 (1999).

    Article  Google Scholar 

  109. K. Tanaka and T. Mura, Int. J. Appl. Mech. 48, 97 (1981).

    Article  Google Scholar 

  110. R. Xiong, H. Peng, S. Wang, H. Sia, and Y. Wen, Mater. Design 85, 707 (2015).

    Article  Google Scholar 

  111. Q. Dai, R. Yang, and K. Chen, Mater. Charact. 42, 21 (1999).

    Article  Google Scholar 

  112. K. J. Miller, Mater. Sci. Tech. 9, 453 (1993).

    Article  Google Scholar 

  113. M. D. Sangid, Int. J. Fatigue 57, 58 (2013).

    Article  Google Scholar 

  114. S. T. Tu and X. C. Zhang, Fatigue Crack Initiation Mechanisms, in Reference Module in Materials Science and Materials Engineering, pp.1–23, Elsevier, UK (2016).

    Google Scholar 

  115. D. T. Pierce, J. A. Jiménez, J. Bentley, D. Raabe, and J. E. Wittig, Acta Mater. 100, 178 (2015).

    Article  Google Scholar 

  116. Y. Nakai and K. Tanaka, Eng. Fract. Mech. 15, 291 (1981).

    Article  Google Scholar 

  117. A. J. McEvily, Jr and R. C. Boettner, Acta Metall. 11, 725 (1963).

    Article  Google Scholar 

  118. G. A. Miller, D. H. Avery, and W. A. Backofen, T. Metall. Soc. AIME 236, 1667 (1966).

    Google Scholar 

  119. H. Ishii and J. Weertman, Metall. Mater. Trans. B 2, 3441 (1971).

    Article  Google Scholar 

  120. Y. Wu, D. Tang, H. T. Jiang, Z. L. Mi, Y. Xue, and H. P. Wu, J. Iron Steel Res. Int. 21, 352 (2014).

    Article  Google Scholar 

  121. D. H. Jeong, S. S. Kim, T. D. Park, S. G. Lee, J. Y. Yoo, J. S. Lee, et al. Fatigue Behavior of High Manganese Steels and Their Welds, The 25th ISOPE Conference, ISOPE, Hawaii, USA (2015).

    Google Scholar 

  122. R. L. Tobler and Y. W. Cheng, Fatigue at Low Temperatures, ASTM STP 857, p. 3, ASTM International, USA (1958).

    Google Scholar 

  123. K. A. Esaklul, W. Yu, and W. W. Gerberich, Fatigue at Low Temperatures, ASTM STP 857, p. 63, ASTM International, USA (1985).

    Book  Google Scholar 

  124. L. Baotong and Z. Xiulin, Mat. Sci. Eng. A 148, 179 (1991).

    Article  Google Scholar 

  125. R. L. Tobler, and R. P. Reed, J. Test. Eval. 12, 364 (1984).

    Article  Google Scholar 

  126. R. P. Reed and A. F. Clark, Materials at Low Temperatures, American Society for Metals, Metals Park, USA (1983).

    Google Scholar 

  127. O. P. Ostash and V. T. Zhmur-Klinmenko, Fiz.-Khim. Mekh. Mater. 23, 17 (1987).

    Google Scholar 

  128. P. K. Liaw, W. A. Logsdon, and M. H. Attaar, ASTM Spec. Tech. Publ. 857, p. 173, USA (1985).

    Google Scholar 

  129. P. K. Liaw and W. A. Logsdon, Eng. Fract. Mech. 22, 585 (1985).

    Article  Google Scholar 

  130. W. Yu, K. Esaklul, and W. W. Gerberich, Metall. Mater. Trans. A 15, 889 (1984).

    Article  Google Scholar 

  131. H. G. Lambers, C. J. Rüsing, T. Niendorf, D. Geissler, J. Freudenberger, and H. J. Maier, Int. J. Fatigue 40, 51 (2012).

    Article  Google Scholar 

  132. L. P. Karjalainen, A. Hamada, R. D. K. Misra, and D. A. Porter, Scripta Mater. 66, 1034 (2012).

    Article  Google Scholar 

  133. P. Guo, L. Qian, J. Meng, F. Zhang, and L. Li, Mat. Sci. Eng. A 584, 133 (2013).

    Article  Google Scholar 

  134. S. Mahajan and G. Y. Chin, Acta Metall. 21, 1353 (1973).

    Article  Google Scholar 

  135. J. Kang, F. C. Zhang, X. Y. Long, and B. Lv, Mat. Sci. Eng. A 591, 59 (2014).

    Article  Google Scholar 

  136. H. Beladi, I. B. Timokhina, Y. Estrin, J. Kim, B. C. De Cooman, and S. K. Kim, Acta Mater. 59, 7787 (2011).

    Article  Google Scholar 

  137. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, Scripta Mater. 61, 737 (2009).

    Article  Google Scholar 

  138. L. Chen, H. S. Kim, S. K. Kim, and B. C. De Cooman, ISIJ Int. 47, 1804 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyokyung Sung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Jeong, D. & Sung, H. Reviews on factors affecting fatigue behavior of high-Mn steels. Met. Mater. Int. 24, 1–14 (2018). https://doi.org/10.1007/s12540-017-7459-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7459-1

Keywords

Navigation