Skip to main content

Advertisement

Log in

Hydrogen Plasma Processing of Iron Ore

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon–hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

References

  1. E. Basson: World Steel in Figures, World Steel Association, Brussels, Belgium, 2015, pp. 1-30.

    Google Scholar 

  2. X. Zhang and E. Basson: Sustainable Steel: at the Core of a Green Economy, World Steel Association, Brussels, Belgium, 2012, pp. 1-40.

    Google Scholar 

  3. R.K. Pachauri, M.R. Allen, V.R. Barros, J. Broome, W. Cramer, R. Christ, and J.A. Church: Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, 2014, pp. 1–151.

  4. A. Carpenter: CO 2 Abatement in the Iron and Steel Industry Report CCC/193, IEA Clean Coal Centre, UK, 2012, pp. 1–119.

  5. D.K. Matlock: AIME Keynote and AIST J. Keith Brimacombe Memorial Lecture, Association for Iron & Steel Technology, Warrendale, PA 15086, United States, 2014, pp. 75–89.

  6. M. Johansson: PhD Dissertation No. 1586, Linkoping University, Sweden, 2014, pp. 1–97.

  7. D.E. Bullard: PhD Dissertation, The University of Arizona, Tucson, AZ, USA, 1993, pp. 1–299.

  8. A. R. Dayal and D. R. Sadedin: Plasma Chem. Plasma Process., 2003, vol.23(4), pp. 627-649.

    Article  Google Scholar 

  9. R. A. Palmer, T. M. Doan, P. G. Lloyd, B. L. Jarvis, and N. U. Ahmed: Plasma Chem. Plasma Process., 2002, vol. 22, pp. 335-350.

    Article  Google Scholar 

  10. R. G. Gold, W. R. Sandall, P. G. Cheplick, D. R. MacRae: Ironmak. Steelmak., 1977, vol. 4(10), pp. 10-14.

    Google Scholar 

  11. K. C. Sabat, P. Rajput, R. K. Paramguru, B. Bhoi, and B. K. Mishra: Plasma Chem. Plasma Process., 2014, vol. 34(1), pp. 1-23.

    Article  Google Scholar 

  12. K. C. Sabat, R. K. Paramguru, S. Pradhan, and B. K. Mishra: Plasma Chem. Plasma Process., 2015, vol. 35(2), pp. 387-399.

    Article  Google Scholar 

  13. P. Rajput, K. C. Sabat, R. K. Paramguru, B. Bhoi, and B. K. Mishra: Ironmak. Steelmak., 2014, vol. 41(10), pp. 721-731.

    Article  Google Scholar 

  14. P. Rajput, B. Bhoi, S. Sahoo, R.K. Paramguru, and B.K. Mishra: Ironmak. Steelmak., 2013, vol. 40(1), pp. 61–68(8).

  15. H. Y. Sohn and M. Olivas-Martinez: JOM, 2014, vol. 66(9), pp. 1557-1564.

    Article  Google Scholar 

  16. S. Seetharaman: Treatise on Process Metallurgy Volume 1: Process Fundamentals, Elsevier, Waltham, MA 02451, USA, 2014, pp. 1–952.

  17. S. Seetharaman: Treatise on Process Metallurgy Volume 2: Process Phenomena, Elsevier, Waltham, MA 02451, USA, 2014, pp. 1–860.

  18. S. Seetharaman: Treatise on Process Metallurgy Volume 3: Industrial Processes, Elsevier, Waltham, MA 02451, USA, 2014, pp. 1–1745.

  19. H.Y. Sohn and Y. Mohassab: in Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015), Barcelona, Spain, July 20–21, 2015 pp. 336-1–336-7.

  20. F. Chen, Y. Mohassab, T. Jiang, and H. Y. Sohn: Metall. Mater. Trans. B, 2015, vol. 46(3), pp. 1133-1145.

    Article  Google Scholar 

  21. J. Feinman: in The Making, Shaping and Treating of Steel, 11th ed., D. H. Wakelin ed., The AISE Steel Foundation, Pittsburgh, PA, 1999, pp. 741–779.

  22. R. Cheeley: in Gasification Technologies Conference, San Francisco, CA, 1999.

  23. R. Quintero: Skillings’ Min. Rev., 1981, pp. 12–17.

  24. W.O. Philbrook: Iron Steelmak., 1982, pp. 12–14.

  25. R. Quintero: in Gorham/Intertech Conference on Iron & Steel Scrap, Scrap Substitutes and Direct Steel Making, Atlanta, GA, 21–23 March 1995.

  26. A. Morrison, S. Hietkamp, and D. S. van Vuuren: Ironmak. Steelmak., 2004, vol. 31(4), pp. 285-290.

    Article  Google Scholar 

  27. M. Komatina and H. -W. Gudenau: MetalurgijaJ. Metall. (MJoM), 2004, vol. 10(4), pp. 309- 328.

    Google Scholar 

  28. M. Singh and B. Björkman: ISIJ Int., 2004, vol. 44(3), pp. 482-491.

    Article  Google Scholar 

  29. T. Sharma: ISIJ Int., 1994, vol. 34(12), pp. 960-963.

    Article  Google Scholar 

  30. T. Sharma, R. C. Gupta, and B. Prakash: ISIJ Int., 1992, vol. 32(12), pp. 1268-1275.

    Article  Google Scholar 

  31. T. Sharma, R. C. Gupta, and B. Prakash: ISIJ Int., 1993, vol. 33(4), pp. 446-453.

    Article  Google Scholar 

  32. S. Joo, H. G. Kim, I. O. Lee, J. L. Schenk, U. R. Gennari, and F. Hauzenberger: Scand. J. Metall., 1999, vol. 28(4), pp. 178-183.

    Google Scholar 

  33. A. Eberle, W. Bohrn, K. Milionis, G. Tessmer, and J. Reidetschläger: in International Conference on Alternative Routes of Iron and Steelmaking (ICARISM), V. N. Misra and R. J. Holmes, eds., The Australasian Institute of Mining and Metallurgy, Victoria, Australia, 1999, pp. 201–11.

  34. I. O. Lee, M. K. Shin, M. Cho, H. G. Kim, and H. G. Lee: ISIJ Int., 2002, vol. 42, pp. S33-S37.

    Article  Google Scholar 

  35. G. Peer: in Industrial Fluidization South Africa (IFSA), A. Luckos and P. Smit, eds., South African Institute of Mining and Metallurgy, Johannesburg, South Africa, 2005, pp. 245–55.

  36. F. Hauzenberger, J. Reidetschläger, J.L. Schenk, and H. Mali: Berg Huettenmaenn. Monatsh. (BHM), 2004, vol. 149(11), pp. 385–92.

  37. K. Wieder, C. Böhn, J. Wurm, and B. Vuletic: Berg Huettenmaennische Monatshefte (BHM), 2004, vol. 149(11), pp. 379–84.

  38. R. Husain, S. Sneyd, and P. Weber: in International Conference on Alternative Routes of Iron and Steelmaking (ICARISM), V.N. Misra and R.J. Holmes, eds., The Australasian Institute of Mining and Metallurgy, Victoria, Australia, 1999, pp. 123–129.

  39. Bresser, P. Weber, and J. Bonestell: in 68th Annual Meeting of the Minnesota Section, SME, Center for Professional Development, University of Minnesota, Duluth, MN, 1995, pp. 17–27.

  40. R.W. von Bitter, R. Husain, P. Weber, and H. Eichberger: in International Conference on New Developments in Metallurgical Process Technology, Dusseldorf, Germany, 1999, pp. 9–16.

  41. A. Hassan, R. Whipp, K. Milionis, and S. Zeller: in Proceedings of the Annual ISS Ironmaking Conference, The Iron & Steel Society, Warrendale, PA, 1994, pp. 481–90.

  42. A.D. Brent, P.L.J. Mayfield, and T.A. Honeyands: in International Conference on Alternative Routes of Iron and Steelmaking (ICARISM), V.N. Misra and R.J. Holmes, eds., The Australasian Institute of Mining and Metallurgy, Victoria, Australia, 1999, pp. 111–14.

  43. T.J. Considine, C. Jablonowsk, and D.M.M. Considine: in Final Report to National Science Foundation & Lucent Technologies Industrial Ecology Research Fellowship BES- 9727297, US Steel Industry, USA, 2001.

  44. M. E. Choi, PhD Dissertation, The University of Utah, USA., 2010.

  45. H. Hiebler and J. F. Plaul: Metallurgija, 2004, vol. 43(3), vol. 155–62.

  46. A. Zuttel, A. Borgschulte, and L. Schlapbach: Hydrogen as a Future Energy Carrier, Wiley, New York, 2008.

  47. X. B. Chen, S. H. Shen, L. J. Guo, and S. S. Mao: Chem. Rev., 2010, vol. 110(11), pp. 6503-6570.

    Article  Google Scholar 

  48. A. Kudo and Y. Miseki: Chem. Soc. Rev., 2009, vol. 38(1), pp. 253-278.

    Article  Google Scholar 

  49. K. C. Sabat, R. K. Paramguru, and B. K. Mishra: Plasma Chem. Plasma Process., 2016, vol. 36(4), pp. 1111-1124.

    Article  Google Scholar 

  50. G. H. Dieke: J. Mol. Spectrosc. 1958, vol. 2(5), pp. 494-517.

    Article  Google Scholar 

  51. D. Staack, B. Farouk, A. Gutsol, and A. Fridman: Plasma Sources Sci. Technol., 2008, vol. 17(2), pp. 1-13.

    Article  Google Scholar 

  52. P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss: Plasma Sources Sci. Technol., 2014, vol. 23(2), pp. 1-32.

    Article  Google Scholar 

  53. L. V. Bogdandy and H. J. Engell: The Reduction of Iron Oxides, 1971, Springer-Verlag, Berlin, pp. 286-310.

    Book  Google Scholar 

  54. W. M. McKewan: Trans. Metall. Soc. AIME., 1960, vol. 218, pp. 2-6.

    Google Scholar 

  55. W. M. McKewan: Trans. Metall. Soc. AIME., 1962, vol. 224, pp. 2-5.

    Google Scholar 

  56. E. T. Turkdogan and J. V. Vinters: Metall. Trans. B, 1971, vol. 2B, pp. 3175-3188.

    Article  Google Scholar 

  57. E. T. Turkdogan, R. G. Olsson, and J. V. Vinters: Metall. Trans. B, 1971, vol. 2B, pp. 3189-3196.

    Article  Google Scholar 

  58. K. O. Yu and P. P. Gilis: Metall. Trans. B, 1981, vol. 12B, pp. 111–120.

    Article  Google Scholar 

  59. H. Y. Lin, Y. W. Chen, and C. Li: Thermochim. Acta, 2003, vol. 400, pp. 61-67.

    Article  Google Scholar 

  60. A. Pineau, N. Kanari, and I. Gaballah: Thermochim. Acta, 2006, vol. 447, pp. 89-100.

    Article  Google Scholar 

  61. M. E. Choi and H. Y. Sohn: Ironmak. Steelmak., 2010, vol. 37(2), pp. 81-88.

    Article  Google Scholar 

  62. A. B. Murphy: Plasma Chem. Plasma Process., 1995, vol. 15, pp. 279–307.

    Article  Google Scholar 

  63. A. B. Murphy: Plasma Chem. Plasma Process., 2000, vol. 20, pp. 279–297.

    Article  Google Scholar 

  64. A. B. Murphy: Chem. Phys., 2012, vol. 398, pp. 64–72.

    Article  Google Scholar 

  65. A. Fridman: Plasma Chemistry, Cambridge University Press, Cambridge, 2008, pp. 1-978.

    Book  Google Scholar 

  66. O. Kubaschewski and C. B. Alcock: Metallurgical Thermochemistry, 5th ed., Pergamon Press, Elmsford, NY, 1983, pp. 1-449.

    Google Scholar 

  67. M.W. Chase Jr: NIST-JANAF Thermochemical Tables. 4th ed., J. Phys, Chem. Ref. Data., Monograph, 1998, vol. 9, pp. 1–1951.

  68. L. Coudurier, D. W. Hopkins, and L. Wilkomirsky: Fundamental Metallurgical Processes, International Series on Materials Science and Technology, Vol. 27, Pergamon Press, Oxford, 1978, pp. 1-191.

    Google Scholar 

  69. V. Dembovsky: Zu Fragen der Thermodynamik and reaktionkinetik in der Plasmametallurgie, Neue Huttu, 1987, vol. 32, pp. 214–19.

  70. C. V. Robino: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 65-69.

    Article  Google Scholar 

  71. M. Capitelli, I. Armenise, E. Bisceglie, D. Bruno, R. Celiberto, G. Colonna, and A. Laricchiuta: Plasma Chem. Plasma Process., 2012, vol. 32(3), pp. 427-450.

    Article  Google Scholar 

  72. M. Capitelli, G. Colonna, and A. D’Angola: Fundamental Aspects of Plasma Chemical Physics: Thermodynamics, Springer, New York, vol. 66, 2011, pp. 1–308.

  73. W. F. Giauque: J. Am. Chem. Soc., 1930, vol. 52(12), pp. 4816-4831.

    Article  Google Scholar 

  74. M. S. Vardya: Mon. Not. R. Astron. Soc., 1965, vol. 129(5), pp. 345-350.

    Article  Google Scholar 

  75. D.M. Chizhikov, Y.V. Tsvetkov, and I.K. Tagirov: in Mechanism and Kinetics of Reduction of Metals, A.M. Samarin, ed., Nauka (Science), Moscow, 1970, pp. 13–26

  76. P. Lindstrom and W. Mallard: NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov, (retrieved October 10, 2015).

  77. Y. Zhang, W. Z. Ding, S. Q. Guo, and K. D. Xu: Trans. Nonferrous Met. Soc. China., 2004, vol, 14(2), pp. 317-321.

    Google Scholar 

  78. Y. Zhang, W. Ding, and X. Lu: Shanghai Met., 2009, vol. 31(4), pp. 15-20.

    Google Scholar 

  79. E. Bäck: PhD Dissertation, Montanuniversität Leoben, Austria, 1998, pp. 1–252.

  80. K. Badr: PhD Dissertation, University of Leoben, Austria, 2007, pp. 1–169.

  81. E. Bäck, R. Schneider, and H. Hiebler: BHM, 1997, vol. 142(5), pp. 195-203.

    Google Scholar 

  82. E. Bäck and H. Hiebler: BHM, 1998, vol. 143(5), pp. 153-158.

    Google Scholar 

  83. E. Bäck and A. Sormann: BHM, 2000, vol. 145(1), pp. 14-21.

    Google Scholar 

  84. K. Badr, E. Bäck, and W. Krieger: Symp. Proc. - Int. Symp. Plasma Chem., 18th, Paper No. 00010, Kyoto, Japan, 2007, pp. 717.

  85. K. Badr, E. Bäck, and W. Krieger: Steel Res. Int., 2007, vol. 78(4), pp. 275-280.

    Article  Google Scholar 

  86. Y. Nakamura, M. Ito, and H. Ishikawa: Plasma Chem. Plasma Process., 1981, vol. 1(2), pp. 149-160.

    Article  Google Scholar 

  87. K. Kamiya, N. Kitahara, I. Morinaka, K. Sakura, M. Ozawa, and M. Tanaka: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 7-16.

    Article  Google Scholar 

  88. T. Kitamura, K. Shibata, and K. Takeda: ISIJ Int., 1993, vol. 33(11), pp. 1150-1158.

    Article  Google Scholar 

  89. A. Weigel, M. Lemperle, W. Lyhs, and H. Wilhelmi: Symp. Proc. - Int. Symp. Plasma Chem., 7th, Eindoven, Paper no. P-11-4, 1985, pp. 1214–19.

  90. T. Nagasaka, M. Hino, and S. Ban-ya: Metall. Mater. Trans., 2000, vol. 31B, pp. 945-95.

    Article  Google Scholar 

  91. S. Ban-ya, Y. Iguchi, and T. Nagasaka: Trans. Iron Steel Inst. Jpn., 1984, vol. 70, pp. 1689-96.

    Google Scholar 

  92. T. Soma: Bull. Jpn. Inst. Met., 1982, vol. 21, pp. 620-25.

    Article  Google Scholar 

  93. V. Dembovsky: Acta. Phys. Slov., 1984, vol. 34 (1), pp. 11-18.

    Google Scholar 

  94. V. Dembovsky: Plasma Metallurgy–the Principles, 1985, Elsevier, New York. pp. 1-476.

    Google Scholar 

  95. A. B. Murphy and C. J. Arundelli: Plasma Chem. Plasma Process., 1994, vol. 14(4), pp. 451-490.

    Article  Google Scholar 

  96. A. B. Murphy and E. Tam: J. Phys. D: Appl. Phys., 2014, vol. 47(29), 295202.

  97. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird: Molecular Theory of Gases and Liquids, 2nd edn., New York: Wiley, 1964.

    Google Scholar 

  98. M.I. Boulos, P. Fauchais, and E. Pfender: Thermal Plasmas: Fundamentals and Applications, 1994, vol. 1(1). Plenum Press, New York

  99. R. S. Devoto: Phys. Fluids, 1967, vol. 10, pp. 2105-2112.

    Article  Google Scholar 

  100. J. Lowke and A. B. Murphy: in The Handbook of Fluid Dynamics, R. W. Johnson, ed., CRC Press, Boca Raton, Florida, 1998, pp. 15-1–15.32.

  101. A. B. Murphy, M. Tanaka, S. Tashiro, T. Satom, and J. J. Lowke: J. Phys. D: Appl. Phys., 2009, vol. 42, 115205.

    Article  Google Scholar 

  102. M. Tanaka and J. J. Lowke: J. Phys. D: Appl. Phys., 2007, vol. 40, pp. R1–24.

    Article  Google Scholar 

  103. A. B. Murphy, M. Tanaka, S. Tashiro, K, Yamamoto, T. Sato, and J. J. Lowke: J. Phys. D: Appl. Phys., 2009, 42, 194006.

    Article  Google Scholar 

  104. O.G. Gabriel, W.E.N. VanHarskamp, J.J.A. VandenDungen, D.C. Schram, and R. Engeln: Symp. Proc. - Int. Symp. Plasma Chem., 19th, Paper No. 115, Bochum, Germany, 2009. pp. 4.

  105. K. Hassouni, A. Gicquel, M. Capitelli, and J. Loureiro: Plasma Sources Sci. Technol., 1999, vol. 8(3), pp.494-512.

    Article  Google Scholar 

  106. Y. A. Mankelevich, M. N. R. Ashfold, J. Ma: J. Appl. Phys., 2008, vol. 104, pp. 1–11.

    Article  Google Scholar 

  107. S.C. Snyder, A. B. Murphy, D. L. Hofeldt, and L. D. Reynolds: Phys. Rev. E, 1995, vol. 52 (3), pp. 2999-3009.

    Article  Google Scholar 

  108. R. Ye, A. B. Murphy, and T. Ishigaki: Plasma Chem. Plasma Process., 2007, vol. 27, pp. 189-204.

    Article  Google Scholar 

  109. J. Meichsner, M. Schmidt, R. Schneider, and H. E. Wagner: Nonthermal Plasma Chemistry and Physics, CRC Press, Boca Raton, FL, USA, 2012.

    Google Scholar 

  110. P.J.W. Vankan: PhD Dissertation, TechnischeUniversiteit, Eindhoven, 2005, pp. 1-132.

  111. F.F. Chen and J.P. Chang: Lecture Notes on Principles of Plasma Processing. Springer, New York, 2003, pp. 1–208.

  112. L.F. Spencer: Doctoral Dissertation. The University of Michigan, USA (2012), pp. 1–181.

  113. Y. Shimizu, Y. Kittaka, H. Matsuura, A. Nezu, and H Akatsuka: Int. Symp. Discharges Electr. Insul. Vac., 23rd, Sept. 2008, vol. 2, pp. 533–36.

  114. D. C. Schram, V. M. Lelevkin, and D. K. Otorbaev: Physics of Non-Equilibrium Plasmas, North-Holland, Amsterdam, 1992.

    Google Scholar 

  115. K. R. Stadler and J. B. Jeffries: Diamond Relat. Mater., 1993, vol. 2, pp. 443-448.

    Article  Google Scholar 

  116. R.F.G. Meulenbroeks, R.A.H. Engeln, M.N.A. Beurskens, R.M.J. Paffen, M.C.M. van de Sanden, J.A.M. van der Mullen, and D.C. Schram: Plasma Sources Sci. Technol., 1995, vol. 4(1), pp. 74–85.

  117. F. Hummernbrum, H. Kempkens, A. Ruzicka, H.-D. Saurent, C. Schiffert, J. Uhlenbusch, and J. Winter: Plasma Sources Sci. Technol., 1992, vol. 1(4), pp. 221-231.

    Article  Google Scholar 

  118. J. Luque, W. Juchmann, and J.B Jeffries: J. Appl. Phys., 1997, vol. 82(5), pp. 2072–81.

  119. J. Luque, W. Juchmann, and J.B Jeffries: J. Appl. Opt., 1997, vol. 36(15), pp. 3261–70.

  120. V. I. Gorokhovsky: Surf. Coat. Technol., 2005, vol. 194(2), pp.344-362.

    Article  Google Scholar 

  121. L. Y. Nelson, A. W. Saunder, and A. B. Harwey: J. Chem. Phys., 1971, vol. 55, pp. 5127.

    Article  Google Scholar 

  122. W. M. Shaub, J. W. Nibler, and A. B. Harwey,: J. Chem. Phys., 1977, vol. 67, pp. 1883.

    Article  Google Scholar 

  123. P. Capezzuto, F. Cramarossa, R. D’Agostino, and E. Molinari: J. Phys. Chem., 1975, vol. 79(15), pp. 1487-1496.

    Article  Google Scholar 

  124. M. Capitelli and M. Dilonardo: Chem. Phys., 1977, vol. 24(3), pp. 417-427.

    Article  Google Scholar 

  125. M. Capitelli, I. Armenise, D. Bruno, M. Cacciatore, R. Celiberto, G. Colonna, O. De. Pascale, P. Diomede, F. Esposito, C. Gorse1, K. Hassouni, A. Laricchiuta, S. Longo, D. Pagano, D. Pietanza, and M. Rutiglianob: Plasma Sources Sci. Technol., 2007, vol. 16, pp. S30–S44.

  126. M. Capitelli,: Int. Conf. Phenom. Ioniz. Gases, 25th, 2001, vol. 4(1), Nagoya, Japan

  127. K. Hassouni, A. Gicquel, and M. Capitelli: Chem. Phys. Lett., 1998, vol. 290(4), pp. 502-508.

    Article  Google Scholar 

  128. K. Hassouni, T. A. Grotjohn, and A. Gicquel: J. Appl. Phys., 1999, vol. 86(1), pp. 134-151.

    Article  Google Scholar 

  129. P. Andre, M. Abbaoui, R. Bessege, and A. Lefort: Plasma Chem. Plasma Process., 1997, vol. 17(2), pp. 207–217.

    Article  Google Scholar 

  130. P. Andre, J. Aubreton, M. Elchinger, V. Rat, P. Fauchais, A. Lefort, and A. B. Murphy: Plasma Chem. Plasma Process., 2004, vol. 24(3), pp. 435–46.

    Article  Google Scholar 

  131. J. Aubreton, M. Elchinger, and P. Fauchais: Plasma Chem. Plasma Process., 1998, vol. 18(1), pp. 1–27.

    Article  Google Scholar 

  132. M. Capitelli, G. Colonna, C. Gorse, P. Minelli, D. Pagano, and D. Giordano : in AIAA 35th Thermophys. Conf., Anaheim, CA, 2001.

  133. M Capitelli and D Giordano: J. Thermophys. Heat Transf., 2002, vol. 16(2), pp. 283–85.

  134. M. Capitelli, R. Celiberto, C. Gorse, C. Laricchiuta, D. Pagano, and P. Traversa: Phys. Rev. E, 2004, vol. 69(2), 026412

  135. K. Chen and T. Eddy: Plasma Chem. Plasma Process., 1998, vol. 18(1), pp. 29–52.

    Article  Google Scholar 

  136. X. Chen and P Han: J. Phys. D: Appl. Phys.,1999, vol. 32(14), pp. 1711–18.

    Article  Google Scholar 

  137. S.A. Miller and M Martinez-Sanchez: J. Propuls. Power, 1996, vol. 12(1), pp. 112–19.

  138. V. Rat, A. Murphy, J. Aubreton, M. Elchinger, and P. Fauchais: J. Phys. D: Appl. Phys., 2008, vol. 41, 183,001

    Google Scholar 

  139. M. Van De Sanden, P. Schram, A. Peeters, J. Van Der Mullen, and G Kroesen: Phys. Rev. A, 1989, vol. 40(9), pp. 5273–76.

    Article  Google Scholar 

  140. R. Sharma, G. Singh, and K. Singh: Phys. Plasmas, 2011, vol. 18(6), 063504

  141. A. B. Murphy: Plasma Chem. Plasma Process., 2015, vol. 35, pp. 471–89.

    Article  Google Scholar 

  142. A. A. Fridman and L. A. Kennedy: Plasma Physics and Engineering. Taylor & Francis, N.Y. 2004.

    Book  Google Scholar 

  143. A. K. Vakar, E. G. Krasheninnikov, and E. A. Tishchenko: Teplofizika Vysokikh Temperatur, 1984, vol. 22, pp. 1061-1066.

    Google Scholar 

  144. V. K. Givotov, V. D. Rusanov, and A Fridman: Diagnostics of Non-Equilibrium Chemically Active Plasma, Energo-Atom-Izdat, Moscow, 1985.

    Google Scholar 

  145. H. Kersten, H. Deutsch, and J.F. Behnke: Vacuum, 1997, vol. 48, pp. 123.

    Article  Google Scholar 

  146. S. V. Dresvin: Physics and Technology of Low Temperature Plasma, Atomizdat, Moscow, 1972.

    Google Scholar 

  147. S. M. L. Hamblyn: Miner. Sci. Eng., July 1977, vol. 9(3), pp. 151-176.

    Google Scholar 

  148. Y. V. Tsvetkov and S. A. Panfilov: Low-Temperature Plasma in Reduction Processes, Nauka (Science), Moscow, 1980.

    Google Scholar 

  149. N.A. Barcza, T.R. Curr, and K.U. Maske: in Extraction Metallurgy 85, 1985.

  150. R. M. Nikolic and R. S. Segsworth: IEEE Trans. Ind. Appl., 1977, vol. 13(1), pp. 45-48.

    Article  Google Scholar 

  151. J.K. Tylko: Conf. Proc. - Int. Symp. Plasma Chem., 1st, Kiel, Germany, 1973, pp. 2–7.

  152. J.K. Tylko: High Temperature Treatment of Material, US Patent 8,783, 167, 1974.

  153. H. L. Gilles and C. W. Clump: Ind. Eng. Chem. Process Des. Dev., 1970, vol. 9(2), pp. 194-207.

    Article  Google Scholar 

  154. K. Saito, Y. Morita, K. Okabe and K. Sanbongi: Tetsu-To-Hagane, 1977, vol. 63, pp. 510.

    Google Scholar 

  155. D.R. MacRae: Method of Reducing Ore, US Patent 4002466, 1977.

  156. M. Mihovsky: J. Univ. Chem. Technol. Metall., 2010, vol. 45(1), pp. 3-18.

    Google Scholar 

  157. F. Kassabji, Conf. Proc. - Int. Symp. Plasma Chem., 4th, 1979, pp. 236–46.

  158. J.F. Plaul: Doctoral Thesis, Montanuniversität Leoben, 2005.

  159. S. Ban-ya, Y. Iguchi, and T. Nagasaka: Trans. ISIJ, 1983, vol. 23, pp. 197.

    Google Scholar 

  160. S. Hayashi and I. Yoshiaki: ISIJ Int., 1994, vol. 34(7), pp. 555-561.

    Article  Google Scholar 

  161. M. Lemperle and A. Weigel: Steel Res., 1985, vol. 56(9), pp. 465-469.

    Article  Google Scholar 

  162. D.R. Sadedin: Chemical and Biomolecular Engineering, The University of Melbourne, Victoria, 3010, Personal Communication, 2013.

  163. D.R. Sadedin and Z. Waven: in Proc. XVII Int. Conf. Gas Discharges and Their Appl. (GD 2008), Cardiff University, 7th-12th September, 2008.

  164. H. Wang: Doctoral Dissertation, The University of Utah, USA, 2011.

  165. Y. K. Rao: Metall. Trans. B, 1979, vol. 10B, pp. 243-55.

    Article  Google Scholar 

  166. Y. K. Rao and M. M. Al-Kahtany: Ironmak. Steelmak., 1984, vol. 11(1), pp. 34-40.

    Google Scholar 

  167. Y. K. Rao and M. M. Al-Kahtany: Ironmaking Steelmaking, 1984, vol. 11(2), pp. 88-94.

    Google Scholar 

  168. N.J. Themelis and W.H. Gauvin: Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 1963, vol. 227, pp. 290–300.

  169. P. C. Hayes: Metall. Trans. B, 10B (June), 1979, pp. 211-7.

    Article  Google Scholar 

  170. S. K. El-Rahaiby and Y. K. Rao: Metall. Trans. B, 1979, 10B (2), pp. 257-69.

    Article  Google Scholar 

  171. S. Seetharaman and H. Y. Sohn: in Fundamentals of Metallurgy, S. Seetharaman, ed., Woodhead Publishing Limited, Cambridge, England, 2005, pp. 299-310.

  172. L. Price, J. Sinton, E. Worrell, D. Phylipsen, H. Xiulian, and L. Ji: Energy, 2002, vol. 27, pp. 429-446.

    Article  Google Scholar 

  173. G. Wingrove, B. Keenan, D. Satchell, and C. van Aswegen: in Gasification Technologies Conference, San Francisco, CA, 17–20 October 1999.

  174. J. D. Beer, E. Worrell, K. Blok: Annu. Rev. Energy Environ., 1998, vol. 23, pp. 123–205.

    Article  Google Scholar 

  175. L. Barreto, A. Makihira, and K. Riahi: Int. J. Hydrogen Econ., 2003, vol. 28 (3), pp. 267–84.

  176. J. A. Turner: Science 305, 2004, vol. 5686, pp. 972–74.

  177. M. IAEA: in IAEA-TECDOC-1085, International Atomic Energy Agency, Vienna, Austria, 1999.

  178. L. Walters, D. Wade, and D. Lewis: Nuclear Energy, 2003, vol. 42(1), pp. 55-62.

    Article  Google Scholar 

  179. J. M. Ogden: in The Pew Center/NCEP 10-50 Workshop, Washington, DC, 25 March 2004.

  180. C. W. Forsberg: Int. J. Hydrogen Energy, 2007, vol. 32, pp. 431-439.

    Article  Google Scholar 

  181. D. Lewis: Prog. Nucl. Energy, 2008, vol. 50, pp. 394-401.

    Article  Google Scholar 

  182. S. Kasahara, Y. Inagaki, and M. Ogawa: Nucl. Eng. Des., 2014, vol. 271, pp. 11-19.

    Article  Google Scholar 

  183. H.Y. Sohn: in S. Seetharaman, A. Mclean, R. Guthriem, and S. Seetharaman, eds., Treatise on Process Metallurgy, vol. 3A, Elsevier, Oxford, UK and Waltham, MA 02451, USA, 2014, pp. 1596–1691.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kali Charan Sabat.

Additional information

Manuscript submitted November 12, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabat, K.C., Murphy, A.B. Hydrogen Plasma Processing of Iron Ore. Metall Mater Trans B 48, 1561–1594 (2017). https://doi.org/10.1007/s11663-017-0957-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0957-1

Keywords

Navigation