Skip to main content
Log in

Hematite reduction by hydrogen plasma: Where are we now?

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Currently, iron is extracted from ores such as hematite by carbothermic reduction. The extraction process includes several unit steps/processes that require large-scale equipment and significant financial investments. Additionally, the extraction process produces a substantial amount of harmful carbon dioxide (CO2). Alternative to carbothermic reduction is the reduction by hydrogen plasma (HP). HP is mainly composed of exciting species that facilitate hematite reduction by providing thermodynamic and kinetic advantages, even at low temperatures. In addition to these advantages, hematite reduction by HP produces water, which is environmentally beneficial. This report reviews the theory and practice of hematite reduction by HP. Also, the present state of the art in solid-state and liquid-state hematite reduction by HP has been examined. The in-flight hematite reduction by HP has been identified as a potentially promising alternative to carbothermic reduction. However, the in-flight reduction is still plagued with problems such as excessively high temperatures in thermal HP and considerable vacuum costs in non-thermal HP. These problems can be overcome by using non-thermal atmospheric HP that deviates significantly from local thermodynamic equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.C. Sabat and A.B. Murphy, Hydrogen plasma processing of iron ore, Metall. Mater. Trans. B, 48(2017), No. 3, p. 1561.

    Article  CAS  Google Scholar 

  2. E. Basson, World Steel in Figures, World Steel Association(2020) [2022-01-06]. https://worldsteel.org/steel-by-topic/statistics/world-steel-in-figures/

  3. A. Carpenter, CO2 Abatement in the Iron and Steel Industry Report CCC/193, IEA Clean Coal Centre, London, 2012, p. 1.

    Google Scholar 

  4. K.C. Sabat, P. Rajput, R.K. Paramguru, B. Bhoi, and B.K. Mishra, Reduction of oxide minerals by hydrogen plasma: An overview, Plasma Chem. Plasma Process., 34(2014), No. 1, p. 1.

    Article  CAS  Google Scholar 

  5. H.Y. Sohn and Y. Mohassab, Development of a novel flash ironmaking technology with greatly reduced energy consumption and CO2 emissions, J. Sustainable Metall., 2(2016), No. 3, p. 216.

    Article  Google Scholar 

  6. K.C. Sabat, Physics and chemistry of solid state direct reduction of iron ore by hydrogen plasma, Phys. Chem. Solid State, 22(2021), No. 2, p. 292.

    Article  CAS  Google Scholar 

  7. X.B. Chen, S.H. Shen, L.J. Guo, and S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 110(2010), No. 11, p. 6503.

    Article  CAS  Google Scholar 

  8. A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38(2009), No. 1, p. 253.

    Article  CAS  Google Scholar 

  9. H.Y. Sohn and M. Olivas-Martinez, Methods for calculating energy requirements for processes in which a reactant is also a fuel: Need for standardization, JOM, 66(2014), No. 9, p. 1557.

    Article  CAS  Google Scholar 

  10. Plasma, Plasma, Everywhere, National Aeronautics and Space Administration, Washington, D.C. [2022-01-05]. https://science.nasa.gov/science-news/science-at-nasa/1999/ast07sep99_1.

  11. G.H. Dieke, The molecular spectrum of hydrogen and its isotopes, J. Mol. Spectrosc., 2(1958), No. 1–6, p. 494.

    Article  Google Scholar 

  12. D. Staack, B. Farouk, A. Gutsol, and A. Fridman, DC normal glow discharges in atmospheric pressure atomic and molecular gases, Plasma Sources Sci. Technol., 17(2008), No. 2, p. 025013.

    Article  CAS  Google Scholar 

  13. P.J. Bruggeman, N. Sadeghi, D.C. Schram and V. Linss, Gas temperature determination from rotational lines in non-equilibrium plasmas: a review, Plasma Sources Sci. Technol., 23(2014), No. 2, p. 023001.

    Article  CAS  Google Scholar 

  14. Y. Shimizu, Y. Kittaka, A. Nezu, H. Matsuura, and H. Akatsuka, Excited state distributions of hydrogen atoms in the microwave discharge hydrogen plasma and the effect of electron energy probabilistic function, IEEE Trans. Plasma Sci., 43(2015), No. 5, p. 1758.

    Article  CAS  Google Scholar 

  15. V.M. Lelevkin, D.K. Otorbaev and D.C. Schram, Physics of Non-Equilibrium Plasmas, North-Holland Publishing Company, Amsterdam, 1992.

    Google Scholar 

  16. K.R. Stalder and J.B. Jeffries, Recent results on the deposition of diamond thin films by arcjet plasmas and diagnostic measurements of the plasma-surface region, Diam. Relat. Mater., 2(1993), No. 2–4, p. 443.

    Article  CAS  Google Scholar 

  17. R.G. Meulenbroeks, R.H. Engeln, M.A. Beurskens, et al., The argon-hydrogen expanding plasma: Model and experiments, Plasma Sources Sci. Technol., 4(1995), No. 1, p. 74.

    Article  CAS  Google Scholar 

  18. F. Hummernbrum, H. Kempkens, A. Ruzicka, et al., Laser-induced fluorescence measurements on the C2Sigma+-X2IIrtransition of the CH radical produced by a microwave excited process plasma, Plasma Sources Sci. Technol., 1(1992), No. 4, p. 221.

    Article  CAS  Google Scholar 

  19. J. Luque, W. Juchmann, and J.B. Jeffries, Spatial density distributions of C2, C3, and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet, J. Appl. Phys., 82(1997), No. 5, p. 2072.

    Article  CAS  Google Scholar 

  20. J. Luque, W. Juchmann, and J.B. Jeffries, Absolute concentration measurements of CH radicals in a diamond-depositing dcarcjet reactor, Appl. Opt., 36(1997), No. 15, p. 3261.

    Article  CAS  Google Scholar 

  21. V.I. Gorokhovsky, Characterization of cascade arc assisted CVD diamond coating technology: Part I. Plasma processing parameters, Surf. Coat. Technol., 194(2005), No. 2–3, p. 344.

    Article  CAS  Google Scholar 

  22. W.F. Giauque, The entropy of hydrogen and the third law of thermodynamics the free energy and dissociation of hydrogen, J. Am. Chem. Soc., 52(1930), No. 12, p. 4816.

    Article  CAS  Google Scholar 

  23. M.S. Vardya, Pressure dissociation and molecular hydrogen, Mon Not R Astron Soc, 129(1965), No. 5, p. 345.

    Article  CAS  Google Scholar 

  24. J. Meichsner, M. Schmidt, R. Schneider, and H.E. Wagner, Nonthermal Plasma Chemistry and Physics, 1st ed., CRC Press Inc., New York, 2012, p.121.

    Book  Google Scholar 

  25. O. Gabriel, W.E.N. van Harskamp, J.J.A. van den Dungen, D.C. Schram, and R. Engeln, Gas phase kinetics and surface interaction in a hydrogen plasma jet, [in] The 19th International Symposium on Plasma Chemistry (ISPC-19), Bochum, 2009. p. 4.

  26. Y.A. Mankelevich, M.N.R. Ashfold, and J. Ma, Plasma-chemical processes in microwave plasma-enhanced chemical vapor deposition reactors operating with C/H/Ar gas mixtures, J. Appl. Phys., 104(2008), No. 11, p. 113304.

    Article  CAS  Google Scholar 

  27. A. Fridman, Plasma Chemistry, Cambridge University Press, New York, 2008.

    Book  Google Scholar 

  28. H. Kersten, H. Deutsch, and J. Behnke I, On the energy balance of substrate surfaces during plasma cleaning of lubricants, Vacuum, 48(1997), No. 2, p. 123.

    Article  CAS  Google Scholar 

  29. M.W. Chase, NIST-JANAF Thermochemical Tables, 4th ed., American Chemical Society, Washington, DC, 1998, p.556.

    Google Scholar 

  30. I.R. Souza Filho, Y. Ma, M. Kulse, et al., Sustainable steel through hydrogen plasma reduction of iron ore: Process, kinetics, microstructure, chemistry, Acta Mater., 213(2021), art. No. 116971.

  31. K.C. Sabat, Production of nickel by cold hydrogen plasma, Plasma Chem. Plasma Process., 41(2021), No. 5, p. 1329.

    Article  CAS  Google Scholar 

  32. K.C. Sabat, Hydrogen plasma — Thermodynamics, J. Phys.: Conf. Ser., 1172(2019), No. 1, art. No. 012086.

  33. K.C. Sabat, Iron production by hydrogen plasma, J. Phys.: Conf. Ser., 1172(2019), No. 1, art. No. 012043.

  34. K.C. Sabat, R.K. Paramguru, and B.K. Mishra, Formation of copper-nickel alloy from their oxide mixtures through reduction by low-temperature hydrogen plasma, Plasma Chem. Plasma Process., 38(2018), No. 3, p. 621.

    Article  CAS  Google Scholar 

  35. K.C. Sabat, R.K. Paramguru, and B.K. Mishra, Reduction of oxide mixtures of (Fe2O3+CuO) and (Fe2O3+Co3O4) by low-temperature hydrogen plasma, Plasma Chem. Plasma Process., 37(2017), No. 4, p. 979.

    Article  CAS  Google Scholar 

  36. K.C. Sabat, R.K. Paramguru, and B.K. Mishra, Reduction of copper oxide by low-temperature hydrogen plasma, Plasma Chem. Plasma Process., 36(2016), No. 4, p. 1111.

    Article  CAS  Google Scholar 

  37. K.C. Sabat, R.K. Paramguru, S. Pradhan, and B.K. Mishra, Reduction of cobalt oxide (Co3O4) by low temperature hydrogen plasma, Plasma Chem. Plasma Process., 35(2015), No. 2, p. 387.

    Article  CAS  Google Scholar 

  38. P. Rajput, K.C. Sabat, R.K. Paramguru, B. Bhoi, and B.K. Mishra, Direct reduction of iron in low temperature hydrogen plasma, Ironmaking Steelmaking, 41(2014), No. 10, p. 721.

    Article  CAS  Google Scholar 

  39. K.C. Sabat, Formation of CuCo alloy from their oxide mixtures through reduction by low-temperature hydrogen plasma, Plasma Chem. Plasma Process., 39(2019), No. 4, p. 1071.

    Article  CAS  Google Scholar 

  40. K.C. Sabat, Production of nickel by cold hydrogen plasma: role of active oxygen, Plasma Chem. Plasma Process., 42(2022), No. 4, p. 833.

    Article  CAS  Google Scholar 

  41. M.E. Choi and H.Y. Sohn, Development of green suspension ironmaking technology based on hydrogen reduction of iron oxide concentrate: Rate measurements, Ironmaking Steelmaking, 37(2010), No. 2, p. 81.

    Article  CAS  Google Scholar 

  42. K. Hassouni, A. Gicquel, M. Capitelli, and J. Loureiro, Chemical kinetics and energy transfer in moderate pressure H2 plasmas used in diamond MPACVD processes, Plasma Sources Sci. Technol., 8(1999), No. 3, p. 494.

    Article  CAS  Google Scholar 

  43. K. Hassouni, T.A. Grotjohn, and A. Gicquel, Self-consistent microwave field and plasma discharge simulations for a moderate pressure hydrogen discharge reactor, J. Appl. Phys., 86(1999), No. 1, p. 134.

    Article  CAS  Google Scholar 

  44. K. Badr, Smelting of Iron Oxides Using Hydrogen Based Plasmas, [Dissertation], University of Leoben, Leoben, 2007, p. 1.

    Google Scholar 

  45. Y.W. Zhang, W.Z. Ding, S.Q. Guo, and K.D. Xu, Reduction of metal oxide in nonequilibrium hydrogen plasma, Chin. J. Nonferrous Met., 14(2004), No. 2, p. 317.

    CAS  Google Scholar 

  46. Y.W. Zhang, W.Z. Ding, X.G. Lu, S.Q. Guo, and K.D. Xu, Reduction of TiO2 with hydrogen cold plasma in DC pulsed glow discharge, Trans. Nonferrous Met. Soc. China, 15(2005), No. 3, p. 594.

    CAS  Google Scholar 

  47. R.G. Gold, W.R. Sandall, P.G. Cheplick, and D.R.M. Rae, Plasma reduction of iron oxide with hydrogen and natural gas at 100 kW and one megawatt, Ironmaking Steelmaking, 4(1977), p. 10.

    CAS  Google Scholar 

  48. D.R. MacRae, Method of Reducing Ores, US Patent, Appl. 4002466, 1977.

  49. F. Kassabji and B. Pateyron, Technical and economical studies for metal production by plasma-steelmaking application, [in] Proceedings of International Symposium on Plasma Chemistry 4, Zurich, 1979, p. 236.

  50. Y. Nakamura, M. Ito, and H. Ishikawa, Reduction and dephosphorization of molten iron oxide with hydrogen-argon plasma, Plasma Chem. Plasma Process., 1(1981), No. 2, p. 149.

    Article  CAS  Google Scholar 

  51. K. Kamiya, N. Kitahara, I. Morinaka, K. Sakuraya, M. Ozawa, and M. Tanaka, Reduction of molten iron oxide and FeO bearing slags by H2-Ar plasma, ISIJ Int., 24(1984), No. 1, p. 7.

    Article  Google Scholar 

  52. E. Bäck, Schmelzreduktion von Eisenoxiden mit Argon-Wasserstoff-Plasma [Dissertation], Montanuniversität Leoben, Leoben, 1998, p. 1.

    Google Scholar 

  53. T. Nagasaka, M. Hino, and S. Ban-Ya, Interfacial kinetics of hydrogen with liquid slag containing iron oxide, Metall. Mater. Trans. B, 31(2000), No. 5, p. 945.

    Article  Google Scholar 

  54. A. Weigel, M. Lemperle, W. Lyhs and H. Wilhelmi, Experiments on the reduction of iron ores with an argon hydrogen plasma, [in] Proceedings of International Symposium on Plasma Chemistry 7, Eindhoven, 1985, p. 1.

  55. H. Hiebler and J.F. Plaul, Hydrogen plasma smelting reduction — An option for steelmaking in the future, Metalurgija, 43(2004), p. 155.

    CAS  Google Scholar 

  56. M. Naseri Seftejani and J. Schenk, Kinetics of molten iron oxides reduction using hydrogen S cience and technology in steelmaking, La Metall. Ital., 7(2018), p. 5.

    Google Scholar 

  57. M. Naseri Seftejani and J. Schenk, Thermodynamic of liquid iron ore reduction by hydrogen thermal plasma, Metals, 8(2018), No. 12, p. 1051.

    Article  CAS  Google Scholar 

  58. M. Naseri Seftejani and J. Schenk, Kinetics of hydrogen plasma smelting reduction of iron oxides, [in] 7th International Congress on Science and Technology of Steelmaking (ICS-2018), Venice, 2018.

  59. M. Naseri Seftejani, J. Schenk, and M.A. Zarl, Reduction of haematite using hydrogen thermal plasma, Materials, 12(2019), No. 10, art. No. E1608.

  60. M. Naseri Seftejani, J. Schenk, D. Spreitzer, and M. Andreas Zarl, Slag formation during reduction of iron oxide using hydrogen plasma smelting reduction, Materials, 13(2020), No. 4, art. No. 935.

  61. M.A. Zarl, M.A. Farkas, and J. Schenk, A study on the stability fields of arc plasma in the HPSR process, Metals, 10(2020), No. 10, p. 1394.

    Article  Google Scholar 

  62. P.R. Behera, B. Bhoi, R.K. Paramguru, P.S. Mukherjee, and B.K. Mishra, Hydrogen plasma smelting reduction of Fe2O3, Metall. Mater. Trans. B, 50(2019), No. 1, p. 262.

    Article  CAS  Google Scholar 

  63. H.L. Gilles and C.W. Clump, Reduction of iron ore with hydrogen in a direct current plasma jet, Ind. Eng. Chem. Process Des. Dev., 9(1970), No. 2, p. 194.

    Article  CAS  Google Scholar 

  64. T. Kitamura, K. Shibata, and K. Takeda, In-flight reduction of Fe2O3, Cr2O3, TiO2 and Al2O3 by Ar-H2 and Ar-CH4 plasma, ISIJ Int., 33(1993), No. 11, p. 1150.

    Article  CAS  Google Scholar 

  65. K. Saito, Y. Morita, K. Okabe and K. Sanbongi, Reduction by Ar-H2 Plasma, Tetsu-To-Hagane., 63(1977), p. 510.

    Google Scholar 

  66. A.R. Dayal and D.R. Sadedin, Application of pulsed traveling hydrogen arcs for metal oxide reduction, Plasma Chem. Plasma Process., 23(2003), No. 4, p. 627.

    Article  CAS  Google Scholar 

  67. R.M. Nikolic and R.S. Segsworth, Extended arc furnace, IEEE Trans. Ind. Appl., IA-13(1977), No. 1, p. 45.

    Article  Google Scholar 

  68. J.K. Tylko, High Temperature Treatment of Materials, US Patent, Appl. 3932171, 1976.

  69. J.K. Tylko, Expanded precessive plasmas, [in] Proceedings of IUPAC Symposium on Plasma Chemistry (ISPC-1), Kiel, 1973, p. 2.

  70. H.T. Wang and H.Y. Sohn, Hydrogen reduction kinetics of magnetite concentrate particles relevant to a novel flash ironmaking process, Metall. Mater. Trans. B, 44(2013), No. 1, p. 133.

    Article  CAS  Google Scholar 

  71. F. Chen, Y. Mohassab, S.Q. Zhang, and H.Y. Sohn, Kinetics of the reduction of hematite concentrate particles by carbon monoxide relevant to a novel flash ironmaking process, Metall. Mater. Trans. B, 46(2015), No. 4, p. 1716.

    Article  CAS  Google Scholar 

  72. M.E. Choi, Suspension Hydrogen Reduction Of Iron Ore Concentrate [Dissertation], The University of Utah, Utah, 2010.

    Google Scholar 

  73. V. Dembovsky, Plasma Metallurgy: The Principles, 1st ed., Elsevier, New York, 1985, p.111.

    Google Scholar 

  74. S.M.L. Hamblyn, Plasma technology and its application to extractive metallurgy, Min. Sci Eng, 9(1977), No. 3, p. 151.

    CAS  Google Scholar 

  75. M. Mihovsky, Thermal plasma application in metallurgy, J. Univ. Chem. Technol. Metall., 45(2010), p. 3.

    CAS  Google Scholar 

  76. K. Badr, E. Bäck and W. Krieger, Hydrogen plasma smelting reduction of iron oxide and its process up-scaling, [in] Forum für Metallurgie und Werkstofftechnik, Leoben, 2007, p. 23.

  77. S.H. Kim, X. Zhang, Y. Ma, et al., Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700°C, Acta Mater., 212(2021), p. 116933.

    Article  CAS  Google Scholar 

  78. S. Ban-ya, Y. Iguchi, and T. Nagasaka, Rate of reduction of liquid iron oxide with hydrogen, Trans. Iron Steel Inst. Jpn., 23(1982), p. 197.

    Google Scholar 

  79. S. Ban-ya, Y. Iguchi, and T. Nagasaka, Rate of reduction of liquid wustite with hydrogen, Tetsu-to-Hagane, 70(1984), No. 14, p. 1689.

    Article  CAS  Google Scholar 

  80. S. Hayashi and Y. Iguchi, Hydrogen reduction of liquid iron oxide fines in gas-conveyed systems, ISIJ Int., 34(1994), No. 7, p. 555.

    Article  CAS  Google Scholar 

  81. M. Lemerle and A. Weigel, On the smelting reduction of iron ores with hydrogen-argon plasma, Steel Res., 56(1985), No. 9, p. 465.

    Article  Google Scholar 

  82. S. Seetharaman, Treatise on Process Metallurgy, Volume 3: Industrial Processes, Elsevier, Waltham, 2014.

    Google Scholar 

  83. L. Barreto, A. Makihira, and K. Riahi, The hydrogen economy in the 21st century: A sustainable development scenario, Int. J. Hydrogen Energy, 28(2003), No. 3, p. 267.

    Article  CAS  Google Scholar 

  84. J. Turner, Sustainable hydrogen production, Science, 305(2004), p. 972.

    Article  CAS  Google Scholar 

  85. G.F. Naterer, I. Dincer, and C. Zamfirescu, Hydrogen Production from Nuclear Energy, Springer, London, 2013.

    Book  Google Scholar 

  86. L. Walters, D. Wade, and D. Lewis, Transition to a nuclear/hydrogen energy system, Nucl. Energy, 42(2003), No. 1, p. 55.

    CAS  Google Scholar 

  87. R.S. El-Emam, H. Ozcan, and C. Zamfirescu, Updates on promising thermochemical cycles for clean hydrogen production using nuclear energy, J. Clean. Prod., 262(2020), p. 121424.

    Article  CAS  Google Scholar 

  88. C.W. Forsberg, Future hydrogen markets for large-scale hydrogen production systems, Int. J. Hydrogen Energy, 32(2007), No. 4, p. 431.

    Article  CAS  Google Scholar 

  89. D. Lewis, Hydrogen and its relationship with nuclear energy, Prog. Nucl. Energy, 50(2008), No. 2–6, p. 394.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

I want to express my deep sense of gratitude to Dr. Tony Murphy of the Commonwealth Scientific and Industrial Research Organisation for serving as a friend, philosopher, and guide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kali Charan Sabat.

Additional information

Conflict of Interest

The author declared that there is no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabat, K.C. Hematite reduction by hydrogen plasma: Where are we now?. Int J Miner Metall Mater 29, 1932–1945 (2022). https://doi.org/10.1007/s12613-022-2467-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2467-7

Keywords

Navigation