Skip to main content
Log in

Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Calculated values of the viscosity, thermal conductivity and electrical conductivity of air and mixtures of air and argon, air and nitrogen, and air and oxygen at high temperatures are presented. In addition, combined ordinary, pressure, and thermal diffusion coefficients are given for the gas mixtures. The calculations, which assione local thermodynamic equilibrium, are performed for atmospheric pressure plasmas in the temperature range from 300 to 30,000 K. The results for air plasmas are compared with those of published theoretical and experimental studies. Significant discrepancies are found with the other theoretical studies; these are attributed to differences in the collision integrals used in calculating the transport coefficients. A number of the collision integrals used here are significantly more accurate than values used previously, resulting in more reliable values of the transport coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Murphy and C. J. Arundell,Plasma Chem. Plasma Process. 14, 451 (1994).

    Google Scholar 

  2. F. Pfender, J. Fincke, and R. Spores,Plasma Chem. Plasma Process. 11, 529 (1991).

    Google Scholar 

  3. J. R. Fincke, W. D. Swank, and D. C. Haggard,Plasma Chem. Plasma Process. 13, 579 (1993).

    Google Scholar 

  4. A. B. Murphy and P. Kovitya,J. Appl. Phys. 73, 4759 (1993).

    Google Scholar 

  5. A. B. Murphy,Phys. Rev. E 48, 3594 (1993).

    Google Scholar 

  6. A. B. Murphy,J. Chem. Phys. 99, 1340 (1993).

    Google Scholar 

  7. L'Air Liquide, Division Scientifique,Gas Encylopaedia, Elsevier, Amsterdam (1976), p. 61.

    Google Scholar 

  8. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, 2nd edn., Wiley, New York (1964).

    Google Scholar 

  9. S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases, 3rd edn., Cambridge University Press, Cambridge, UK (1970).

    Google Scholar 

  10. J. H. Ferziger and H. G. Kaper,Mathematical Theory of Transport Processes in Gases, North-Holland, Amsterdam (1972).

    Google Scholar 

  11. F. Levin, H. Partridge, and J. R. Stallcop,J. Thermophys. heat Transfer 4, 469 (1990).

    Google Scholar 

  12. J. R. Stallcop, H. Partridge, and E. Levin,J. Chem. Phys. 95, 6429 (1991).

    Google Scholar 

  13. H. Partridge, J. R. Stallcop, and E. Levin,Chem. Phys. Lett. 184, 505 (1991).

    Google Scholar 

  14. B. Brunetti, G. Liuti, F. Luzzati, F. Pirani, and F. Vecchiocattivi,J. Chem. Phys. 74, 6734 (1981).

    Google Scholar 

  15. K. S. Yun and F. A. Mason,Phys. Fluids 5, 380 (1962).

    Google Scholar 

  16. B. Arnaec and W. B. Brown,Chem. Phys. 174, 351 (1993).

    Google Scholar 

  17. A. A. Clifford, P. Gray, and N. Platts,J. Chem. Soc. Faraday Trans. 173, 381 (1977).

    Google Scholar 

  18. R. S. Brokaw and R. A. Svehla,J. Chem. Phys. 44, 4643 (1966).

    Google Scholar 

  19. P. Kovitya, “Theoretical determination of material functions of plasmas formed from ablated PTFE, alumina, PVC, and Perspex for the temperature range of 5000 to 30,000 K,” Technical Memorandum No. 3, CSIRO Division of Applied Physics, Sydney, Australia (1982).

    Google Scholar 

  20. H. J. M. Hanley and M. Klein,J. Phys. Chem. 76, 1743 (1972).

    Google Scholar 

  21. R. A. Svehla and B. J. McBride, “Fortran IV computer program for calculation of thermodynamic and transport properties of complex chemical systems”, Technical Note TN D-7056, NASA, Washington, DC (1973).

    Google Scholar 

  22. J. A. Rutherford and D. A. Vroom,J. Chem. Phys. 61, 2514 (1974).

    Google Scholar 

  23. T. F. Moran, M. R. Flannery, and P. C. Cosby,J. Chem. Phys. 61, 1261 (1974).

    Google Scholar 

  24. V. A. Belyaev, B. G. Brezhnev, and E. M. ErastovSov. Phys. JETP 27, 924 (1968).

    Google Scholar 

  25. M. Capitelli,J. Phys. Colloq. 38, C3–227 (1977).

    Google Scholar 

  26. A. Dalgarno,Philos. Trans. R. Soc. London 250, 426 (1958).

    Google Scholar 

  27. E. J. Robinson and S. Geltman,Phys Rev. 153, 153 (1967).

    Google Scholar 

  28. Y. Itikawa,At. Data Nucl. Data Tables 21, 69 (1978).

    Google Scholar 

  29. W. M. Johnstone and W. R. Newell,J. Phys B. At. Mol. Opt. Phys 26, 129 (1993).

    Google Scholar 

  30. J. E. Land,J. Appl. Phys. 49, 5716 (1978).

    Google Scholar 

  31. J. J. Lowke, A. V. Phelps, and B. W. Irwin,J. Appl. Phys. 44, 4664 (1973).

    Google Scholar 

  32. C. Szmytkowski, K. Macićag, and A. M. Krzysztofowicz,Chem. Phys. Lett. 190, 141 (1992).

    Google Scholar 

  33. E. A. Mason, R. J. Munn, and F. J. Smith,Phys. Fluids 10, 1827 (1967).

    Google Scholar 

  34. J. Bacri and S. Raffanel,Plasma Chem. Plasma Process. 9, 133 (1989).

    Google Scholar 

  35. M. Capitelli and R. S. Devoto,Phys. Fluids 16, 1835 (1973).

    Google Scholar 

  36. J. Aubreton, C. Bonnefoi, and J. M. Mexmain,Rev. Phys. Appl. 21, 365 (1986).

    Google Scholar 

  37. M. F. Elchinger, B. Pateyron, G. Delluc, and P. Fauchais, inProceedings of the Ninth International Symposium on Plasma Chemistry, Pugnochiuso, Italy, 1989, Vol. 1, International Union of Pure and Applied Chemistry, Oxford, UK (1989), p. 127.

    Google Scholar 

  38. M. I. Boulos, P. Fauchais, and E. Pfender,Thermal Plasma: Fundamentals and Applications, Vol. I, Plenum Press, New York (1994), pp. 413–417.

    Google Scholar 

  39. J. M. Yos, “Transport properties of nitrogen, hydrogen, oxygen, and air at 30,000 K”, Technical Memorandum RAD-TM-63-7, AVCO Corporation, Wilmington, Massachusetts (1963).

    Google Scholar 

  40. R. S. Devoto, U. H. Bauder, J. Cailleteau, and E. Shires,Phys. Fluids 21, 552 (1978).

    Google Scholar 

  41. E. I. Asinovsky, A. V. Kirillin, E. P. Pakhomov, and V. I. Shabashov,Proc. IEEE 59, 592 (1971).

    Google Scholar 

  42. R. S. Devoto,Phys. Fluids 19, 22 (1976).

    Google Scholar 

  43. P. W. Schreiber, A. M. Hunter, and K. R. Benedetto,AIAA J. 11, 815 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, A.B. Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas. Plasma Chem Plasma Process 15, 279–307 (1995). https://doi.org/10.1007/BF01459700

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01459700

Key words

Navigation