Skip to main content
Log in

Investigation of Eccentric Open Eye Formation in a Slab Caster Tundish

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Inert gas shrouding in tundish can result in the formation of a tundish open eye (TOE) due to the presence of reversed flows on the upper surface of the tundish. Prolonged presence of open eyes promotes reoxidation of liquid steel and creates harmful inclusions, which can ultimately result in clogging of SENs. In spite of its importance, not much work has been performed on TOEs. In our series of recent works (Chattopadhyay in Modelling of Transport Phenomena for Improved Steel Quality in a Delta-Shaped Four Strand Tundish, 2011; Chattopadhyay et al. in ISIJ Int 51: 573–580, 2011; Chatterjee and Chattopadhyay in ISIJ Int 55: 1416–1424, 2015; Metall Mater Trans B 41: 508–521, 2016; Metall Mater Trans B 47: 3099–3114, 2016; Chatterjee et al. in ISIJ Int 56: 1889–1892, 2016), although substantial efforts have been made to understand the basics of TOE formation process, a lot still remains to be deciphered. The current work deals with investigating a strange phenomenon observed during tundish operations: eccentric open eye formation. It is essential to gain proper insights of this matter in order to improve the operations, enhance liquid metal cleanliness, and generate more revenues. A mathematical model was developed using ANSYS-FLUENT 16.2. The standard k-ε turbulence model and the discrete phase method, coupled with the discrete random walk model was employed. Three different causes for eccentric open eye formation viz., unbalanced throughput, biased argon injection, and misalignment of ladle shroud have been analyzed. The predicted results correspond to both water model experiments and real plant observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

k :

Kinetic energy of turbulence per unit mass, m2/s2

\( \overline{{u^{\prime}_{i} }} \) :

Time-averaged velocity in the direction xi, m s−1

x i :

Cartesian space coordinate

ε :

Rate of energy dissipation, m2/s3

v t :

Kinematic viscosity of fluid, m2 s−1

C 1 , C 2 , C µ , \( \sigma_{\text{k }} \;{\text{and}}\; \sigma_{{\varepsilon }} \) :

Empirical Constants

G k :

Rate of production of k, kg/ms3

µ t :

Turbulent viscosity, kg m−1s−1

ρ :

Density of the fluid, kg m−3

µ eff :

Effective viscosity, kg m−1s−1

µ :

Viscosity of the fluid, kg m−1s−1

u p :

Particle velocity, m s−1

C D :

Drag coefficient

d p :

Particle diameter, m

u rel :

Fluid velocity relative to the particle, m s−1

ρ P :

Density of the particle, kg m−3

a 1 , a 2 , a 3 :

Constants

\( \overline{u} \) :

Mean fluid phase velocity

\( u^{\prime}(t) \) :

Fluctuating fluid phase velocity component

\( \zeta \) :

Normally distributed random number

r :

Uniform random number, 0 < r < 1

\( \tau_{\text{e}} \) :

Time scale

\( \tau \) :

Particle relaxation time

T L :

Fluid Lagrangian integral time

L e :

Eddy length scale

Re:

Relative Reynolds number

L :

Characteristic length, m

TPM:

Tonnes per minute

LPM:

Liters per minute

DPM:

Discrete phase modeling

TOE:

Tundish open eye

STP:

Standard temperature and pressure

References

  1. 7. A. K. Sinha and Y. Sahai, ISIJ Int., 1993, vol. 33, pp. 556–566.

    Article  Google Scholar 

  2. 8. S. Joo and R. I. L. Guthrie, Metall. Mater. Trans. B, 1993, vol. 24, pp. 755–765.

    Article  Google Scholar 

  3. 9. S. Joo, J. W. Han, and R. I. L. Guthrie, Metall. Mater. Trans. B, 1993, vol. 24, pp. 767–777.

    Article  Google Scholar 

  4. 10. S. Joo, J. W. Han, and R. I. L. Guthrie, Metall. Mater. Trans. B, 1993, vol. 24, pp. 779–788.

    Article  Google Scholar 

  5. 11. L. Zhang, S. Taniguchi, and K. Cai, 2000, vol. 31, pp. 253–266.

    Google Scholar 

  6. 12. R. Schwarze, F. Obermeier, and D. Janke, Model. Simul. Mater. Sci. Eng., 2001, vol. 9, pp. 279–287.

    Article  Google Scholar 

  7. S. Garcia-Hernandez, J. de J. Barreto, J. A. Ramos-Banderas, and G. Solorio-Diaz, Steel Res. Int., 2010, vol. 81, pp. 453–460.

    Article  Google Scholar 

  8. 14. K. Chattopadhyay, M. Isac, and R. I. L. Guthrie, Ironmak. Steelmak., 2011, vol. 38, pp. 398–400.

    Article  Google Scholar 

  9. 15. H. Ling and L. Zhang, J. Met., 2013, vol. 65, pp. 1155–1163.

    Google Scholar 

  10. 16. L. Zhong, B. Li, Y. Zhu, R. Wang, W. Wang, and X. Zhang, ISIJ Int., 2007, vol. 47, pp. 88–94.

    Article  Google Scholar 

  11. 17. K. Chattopadhyay, M. Isac, and R. I. L. Guthrie, Ironmak. Steelmak., 2012, vol. 39, pp. 454–462.

    Article  Google Scholar 

  12. 18. V. Singh, S. K. Ajmani, A. R. Pal, S. K. Singh, and M. B. Denys, Ironmak. Steelmak., 2012, vol. 39, pp. 171–179.

    Article  Google Scholar 

  13. 19. A. Cwudzinski, Steel Res. Int., 2014, vol. 85, pp. 902–917.

    Article  Google Scholar 

  14. M. L. Lowry and S. Yogeshwar: Steelmaking Conference Proceedings, 1991, pp. 505–511.

  15. 21. C. Damble and S. Yogeshwar, ISIJ Int., 1996, vol. 36, pp. 681–689.

    Article  Google Scholar 

  16. 22. C.-E. Grip, ISIJ Int., 1998, vol. 38, pp. 704–713.

    Article  Google Scholar 

  17. 23. D.-Y. Sheng, C.-S. Kim, J. Yoon, and T.-C. Hsiao, ISIJ Int., 1998, vol. 38, pp. 843–851.

    Article  Google Scholar 

  18. 24. Y. Pan and B. Björkman, ISIJ Int., 2002, vol. 42, pp. 53–62.

    Article  Google Scholar 

  19. 25. K. Chattopadhyay, M. Isac, R. Ian, and L. Guthrie, ISIJ Int., 2012, vol. 52, pp. 2026–2035.

    Article  Google Scholar 

  20. S. Chatterjee and K. Chattopadhyay: AISTech - Iron Steel Technology Conference. Proceedings pp. 2615–25, 2015.

  21. 27. K. Sasai and Y. Mizukami, ISIJ Int., 2000, vol. 40, pp. 40–47.

    Article  Google Scholar 

  22. 28. G. Yang, Ã. X. Wang, F. Huang, Ã. W. Wang, Y. Yin, and C. Tang, Steel Res. Int., 2014, vol. 85, pp. 784–792.

    Article  Google Scholar 

  23. 29. P. Yan, S. Arnout, M. Vanende, E. Zinngrebe, T. Jones, B. Blanpain, and M. Guo, Metall. Mater. Trans. B, 2015, vol. 46, pp. 1242–1251.

    Article  Google Scholar 

  24. 3. S. Chatterjee and K. Chattopadhyay, ISIJ Int., 2015, vol. 55, pp. 1416–1424.

    Article  Google Scholar 

  25. 4. S. Chatterjee and K. Chattopadhyay, Metall. Mater. Trans. B, 2016, vol. 41, pp. 508–521.

    Article  Google Scholar 

  26. 5. S. Chatterjee and K. Chattopadhyay, Metall. Mater. Trans. B, 2016, vol. 47, pp. 3099–3114.

    Article  Google Scholar 

  27. 6. S. Chatterjee, D. Li, and K. Chattopadhyay, ISIJ Int., 2016, vol. 56, pp. 1889–1892.

    Article  Google Scholar 

  28. K. Chattopadhyay: Modelling of Transport Phenomena for Improved Steel Quality in a Delta Shaped Four Strand Tundish, McGill University, 2011.

  29. 2. K. Chattopadhyay, M. Isac, and R. I. L. Guthrie, ISIJ Int., 2011, vol. 51, pp. 573–580.

    Article  Google Scholar 

  30. 30. K. Chattopadhyay, M. Isac, and R. I. L. Guthrie, ISIJ Int., 2011, vol. 51, pp. 759–768.

    Article  Google Scholar 

  31. 31. K. Chattopadhyay, F. G. Liu, M. Isac, and R. I. L. Guthrie, Ironmak. Steelmak., 2011, vol. 38, pp. 112–118.

    Article  Google Scholar 

  32. Y. A. Buevich: Izv. AN SSSR. Mekhanika Zhidkosti I Gaza, 1966, vol. 1, pp. 182–183.

  33. 33. A. D. Gosman and E. Ioannides, J. Energy, 1983, vol. 7, pp. 482–490.

    Article  Google Scholar 

  34. ANSYS-Fluent 15.0 Theory Guide (Southpointe, 2013).

  35. 35. B. E. Launder and D. B. Spalding, Comput. Methods Appl. Mech. Eng., 1974, vol. 3, pp. 269–289.

    Article  Google Scholar 

  36. 36. S. V Patankar and D. B. Spalding, Int. J. Heat Mass Transf., 1972, vol. 15, pp. 1787–1806.

    Article  Google Scholar 

  37. 37. H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (McGraw-Hill, Loughborough, 1995).

    Google Scholar 

  38. S. Chatterjee, D. Li, J. Leung, J. Sengupta and K. Chattopadhyay: Project No.: EGP 481376 – 15, University of Toronto, Toronto, December 2015.

Download references

Acknowledgments

The authors would like to thank ANSYS Inc., SimuTech Group for their support toward the mathematical modeling research, and the colleagues at ArcelorMittal Dofasco Steelmaking Technology and Operations for support provided in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinnor Chattopadhyay.

Additional information

Manuscript submitted May 20 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S., Li, D., Leung, J. et al. Investigation of Eccentric Open Eye Formation in a Slab Caster Tundish. Metall Mater Trans B 48, 1035–1044 (2017). https://doi.org/10.1007/s11663-016-0899-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0899-z

Keywords

Navigation