Skip to main content
Log in

Removal of Inclusions from Molten Aluminum by Supergravity Filtration

  • Technical Publication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G  50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G  50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. L.N.W. Damoah and L.F. Zhang: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 886–907.

    Article  Google Scholar 

  2. D. Shu, T.X. Li, B.D. Sun, Y.H. Zhou, J. Wang, and Z.M. Xu: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1527–33.

    Article  Google Scholar 

  3. Y.J. He, Q.L. Li, and W. Liu: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1149–55.

    Article  Google Scholar 

  4. Y.J. He, Q.L. Li, and W. Liu: Mater. Lett., 2011, vol. 65, pp. 1226–28.

    Article  Google Scholar 

  5. M.W Kennedy, S. Akhtar, J.A Bakken, and R.E. Aune: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 691–705.

    Article  Google Scholar 

  6. K. Li, J. Wang, D. Shu, T.X. Li, B.D Sun, and Y.H. Zhou: Mater. Lett., 2002, vol. 56, pp. 215–20.

    Article  Google Scholar 

  7. M.W. Kennedy, S. Akhtar, J.A. Bakken, and R.E. Aune: Light Metals, John Wiley & Sons, Inc., San Diego, CA, 2011, pp. 763–68.

    Google Scholar 

  8. L.F. Zhang, S.Q. Wang, A.P. Dong, J.W. Gao, and L.N.W. Damoah: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2153–85.

    Article  Google Scholar 

  9. G. Gaustad, E. Olivetti, and R. Kirchain: Resources Conserv. Recycl., 2012, vol. 58, pp. 79–87.

    Article  Google Scholar 

  10. K. Takahashi and S. Taniguchi: ISIJ Int., 2003, vol. 43, pp. 820–27.

    Article  Google Scholar 

  11. H. Zhao, L. Shao, and J.F. Chen: Chem. Eng. J., 2010, vol. 156, pp. 588–93.

    Article  Google Scholar 

  12. L.X. Zhao, Z.C. Guo, Z. Wang, and M.Y. Wang: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 505–08.

    Article  Google Scholar 

  13. S.W. Kim, U.H. Im, H.C. Cha, S.H. Kim, J.E. Jang, and K.Y. Kim: China Foundry, 2013, vol. 10, pp. 112–17.

    Google Scholar 

  14. J.W. Li, Z.C. Guo, H.Q. Tang, Z. Wang, and S.T. Sun: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 958–63.

    Article  Google Scholar 

  15. J.C. Li, Z.C. Guo, and J.T. Gao: ISIJ Int., 2014, vol. 54, pp. 743–49.

    Article  Google Scholar 

  16. J.C. Li and Z.C. Guo: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1272–80.

    Article  Google Scholar 

  17. J.C. Li, Z.C. Guo, and J.T. Gao: Ironmaking and Steelmaking, 2014, vol. 41, pp. 776–83.

    Article  Google Scholar 

  18. G.Y. Song, B. Song, Y.H. Yang, Z.B. Yang, and W.B. Xin: Metall. Mater. Trans. B, 2015, vol. 45B, pp. 2190–97.

    Article  Google Scholar 

  19. R. Fritzsch, M.W. Kennedy, J.A. Bakken, and R.E. Aune: Light Metals, TMS, Hoboken, NJ, 2013.

    Google Scholar 

  20. M. Jaradeh and T. Carlberg: Mater. Sci. Eng. A, 2005, vols. 413–414, pp. 277–82.

    Article  Google Scholar 

  21. J.P. Harvey and P. Chartrand: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 908–24.

    Article  Google Scholar 

  22. D. Emadi, J.E. Gruzleski, and J.M. Toguri: Metall. Trans. B, 1993, vol. 24B, pp. 1055–63.

    Article  Google Scholar 

  23. H. Uozumi, K. Kobayashi, K. Nakanishi, T. Matsunaga, K. Shinozaki, H. Sakamoto, T. Tsukada, C. Masuda, and M. Yoshida: Mater. Sci. Eng. A, 2008, vol. A495, pp. 282–87.

    Article  Google Scholar 

  24. J.P. Nielson: J. Dent. Res., 1978, vol. 57, pp. 261–69.

    Article  Google Scholar 

  25. M. W. Kennedy: Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, 2013.

  26. X. Cao: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 1075–83.

    Article  Google Scholar 

  27. A. Rushton, A.S. Ward, and R.G. Holdich: Solid-Liquid Filtration and Separation Technology, 2nd ed., Wiley, New York, NY, 2000.

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 51234001 and 51274269). The authors are grateful to the State Key Laboratory of Advanced Metallurgy (University of Science and Technology Beijing) for the use of their supergravity apparatus. Sincere gratitude is also due to Professor Zhancheng Guo and Zhenya Zhang for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Song.

Additional information

Manuscript submitted April 25, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G., Song, B., Yang, Z. et al. Removal of Inclusions from Molten Aluminum by Supergravity Filtration. Metall Mater Trans B 47, 3435–3445 (2016). https://doi.org/10.1007/s11663-016-0775-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0775-x

Keywords

Navigation