Skip to main content
Log in

Removal of Inclusions from Aluminum Through Filtration

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Filtration experiments were carried out using both an AlF3 slurry-coated and an uncoated Al2O3 ceramic foam filter to study the removal of nonmetallic inclusions and impurity elements. The results showed that the 30-ppi ceramic foam filter removed up to 85 pct inclusions from aluminum. Several pictures of two- and three-dimensional morphologies of both nonmetallic and intermetallics inclusions also have been presented. The following contributing mechanisms for the removal of nonmetallic inclusions in the deep-bed filtration mode are proposed: (1) collision with walls and interception effect and (2) the formation of both intermetallic and nonmetallic inclusion bridges during filtration. Fluid dynamics modeling of inclusion attachment to the filter walls showed that most inclusions, especially those with larger sizes, are entrapped at the upper part of the filter, whereas smaller inclusions are dispersed well throughout the filter. The calculated inclusions removal fractions for the 30-ppi filter showed that almost all inclusions >125 μm are removed, and inclusions ~5 μm in size are removed up to 85 pct. The interfacial energy between two collided same-size inclusions was calculated, indicating that a strong clustering of inclusions may result within the filter window. Magnesium impurities were removed up to 86 pct by the AlF3 slurry-coated filter. The filter acted in active filtration mode in addition to the contribution of the air oxidation of dissolved [Mg], which was calculated to be 13 pct. The total mass transfer coefficient of dissolved [Mg] to the reaction interface was calculated to be 1.15 × 10−6 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. C.J. Simensen and C. Berg: Aluminium, 1980. vol. 56, no. 5, pp. 335–40.

    CAS  Google Scholar 

  2. A.F. Valdes, M.A. Hinojosa-SanMiguel, A.H. Castillejos-Escobar, E. Macias-Avila, and F.A. Acosta-Gonzalez: TMS Annual Meeting—Light Metals, TMS, Warrendale, PA, 1997.

    Google Scholar 

  3. B. Gariepy and G. Dube: TMS Annual Meeting–Light Metals, TMS, Warrendale, PA, 1986.

    Google Scholar 

  4. H. Gorner, T.A. Engh, M. Syvertsen, and L. Zhang: J. Mater. Sci., 2007, vol. 546–49, pp. 801–07.

    Google Scholar 

  5. H. Gorner, M. Syvertsen, O. Eivind, T.A. Engh: TMS Annual Meeting—Light Metals, TMS, Warrendale, PA, 2005.

    Google Scholar 

  6. C.J. Simensen and C. Berg: Zeitschrift fuer Metallkunde, 1985, vol. 76, pp. 409–14.

    CAS  Google Scholar 

  7. D. Apelian and K.K. Choi: Metal Refining by Filtration. Foundry Process-Their Chemistry and Physics, Eds. S. Katz and C.F. Landefeld, pp. 467–94. Plenum Press, New York, NY, 1988.

    Google Scholar 

  8. A. Ciftja, L. Zhang, A. Kvithyld, and T.A. Engh: Rare Metals, 2006, vol. 25, pp. 180–85.

    Article  Google Scholar 

  9. E. Lae, H. Duval, C. Riviere, P. Le Brun, and J.-B. Guillot: Light Metals, TMS, Warrendale, PA, 2006, pp. 753–58.

    Google Scholar 

  10. N.J. Keegan and S.F. Ray: Light Metals, TMS, Warrendale, PA, 1997, pp. 973–82.

    Google Scholar 

  11. N.J. Keegen, W. Schneider, and H.P. Krug: Light Metals, TMS, Warrendale, PA, 1999, pp. 1031–41.

    Google Scholar 

  12. N. Towsey: Light Metals, TMS, Warrendale, PA, 2001, pp. 973–77.

    Google Scholar 

  13. N. Towsey, W. Schneider, and H.-P. Krug: Light Metals, TMS, Warrendale, PA, 2002, pp. 931–35.

    Google Scholar 

  14. N. Towsey, W. Schneider, and H.-P. Krug: 7th Australian Asian Pacific Conf. on Aluminium Cast House Technologies, TMS, Warrendale, PA 2001, pp. 125–37.

  15. N. Nasaaki, Y. Hirono, and I. Okamoto: Trans. JWRI, 1984, vol, 13, no. 2, pp. 29–34.

    Google Scholar 

  16. R. Asthana, A. Kumar, and N. Dahotre: Materials Science in Manufacturing, Elsevier, Amsterdam, the Netherlands, 1996, pp. 273–75.

    Google Scholar 

  17. T.A. Engh: Principle of Metal Refining, Oxford University Press, New York, NY, 1992, pp. 61.

    Google Scholar 

  18. J.T. Richardson, Y. Peng, and D. Rumue: Applied Catalysis A: General, 2000, vol. 204, pp. 19–32.

    Article  CAS  Google Scholar 

  19. L. Liu and F.H. Samuel: J. Mater. Sci., 1997, vol. 32, pp. 5927–44.

    Article  CAS  Google Scholar 

  20. L. Liu and F.H. Samuel: J. Mater. Sci., 1997, vol. 32, pp. 5901–25.

    Article  CAS  Google Scholar 

  21. D.J. Lloyed: Comp. Sci. Technol., 1989, vol. 35, pp. 159–79.

    Article  Google Scholar 

  22. D.J. Lloyed, H. Lagace, A. McLeod, and P.L. Morris: Mater. Sci. Eng., A, 1989, vol. 107, pp. 73–80.

    Article  Google Scholar 

  23. D.N. Miller, L. LU, and A.K. Dahle: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 873–78.

    Article  CAS  ADS  Google Scholar 

  24. Z.K. Liu and Y.A. Chang: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1081–95.

    Article  CAS  Google Scholar 

  25. S. Pontevichi, F. Bosselet, F. Barbeau, M. Peronnet, and J.C. Viala: J. Phase Equilibria Diffusion, 2004, vol. 21, no. 6, pp. 528–37.

    Google Scholar 

  26. R.A. Olson-III and L.C.B. Martins: Adv. Eng. Mater., 2005, vol. 7, no. 4, pp. 187–92.

    Article  CAS  Google Scholar 

  27. L. Zhang, A. Ciftja, and L.N.W. Damoah: Proc. European Metallurgical Conf., Dusseldorf, Germany, 2007, pp. 1413–28.

  28. L. Zhang: Steel Res. Int., 2005, vol. 76, no. 11, pp. 784–96.

    CAS  Google Scholar 

  29. L. Zhang, J. Aoki, and B.G. Thomas: Metall. Mater. Trans. B., 2006. vol. 37B, no. 3, pp. 361–79.

    Article  CAS  Google Scholar 

  30. D.M. Stefanescu, A. Moitra, A. Kacar, and B.K. Dhindaw: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 231–39.

    CAS  ADS  Google Scholar 

  31. V. Laurent, D. Chatain, and N. Eustathopoulos: Mater. Sci. Eng, 1991, vol. A135, p. 89.

    CAS  Google Scholar 

  32. H. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, no. 10, pp. 946–55.

    Article  CAS  Google Scholar 

  33. D.H.L. Ng, Q. Zhao, C. Qin, M. Ho, and Y. Hong: J. Eur. Ceram. Soc., 2001, vol. 21, pp. 1049–53.

    Article  CAS  Google Scholar 

  34. H. Gorner, T.A. Engh, and M. Syvertsen: Light Metals 2006, TMS, Warrendale, PA, 2006, pp. 756–70.

    Google Scholar 

  35. L.N.W. Damoah and L. Zhang: Metall. Mater. Trans. B, in press.

  36. T.A. Utigard: Proc. Int. Symp. on Extraction, Refining, and Fabrication of Light Metals, Ottawa, Canada, 1991, pp. 353–65.

  37. E.C. Eckert, T.R. Hornack, G.E. Lyness, J.A. Kaems, C.J. Cox, R.E. Miller, D. Apelian, and R. Mutharasan: Patent EP 0 490 371 B1, 1992.

Download references

Acknowledgments

This research is supported by the Research Board Grant, Material Research Center (MRC), and Intelligent Systems Center (ISC) at the Missouri University of Science and Technology (Missouri S&T).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Manuscript submitted August 26, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damoah, L.N.W., Zhang, L. Removal of Inclusions from Aluminum Through Filtration. Metall Mater Trans B 41, 886–907 (2010). https://doi.org/10.1007/s11663-010-9367-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9367-3

Keywords

Navigation