Skip to main content
Log in

Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian kε model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. AISE Steel Foundation, A.W. Cramb, and C.B. Francis: The Making, Shaping and Treating of Steel: Casting Volume, AISE Steel Foundation, Washington, DC, 2003.

  2. Hua Bai and Brian G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32, pp. 253–67.

    Article  Google Scholar 

  3. Hua Bai and Brian G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32, pp. 707–22.

    Article  Google Scholar 

  4. K.G. Rackers and B.G. Thomas: 78th Steelmak. Conf. Proc., Iron and Steel Society, Nashville, TN, 1995, pp. 723–34.

  5. J. Knoepke, M. Hubbard, J. Kelly, R. Kittridge, and J. Lucas: Steelmak. Conf. Proc., Iron and Steel Society, Chicago, IL, 1994.

  6. Brian G. Thomas: Iron Steel Technol., 2006, vol. 3, p. 127.

    Google Scholar 

  7. 7 Lifeng Zhang, Jun Aoki, and Brian G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37, pp. 361–79.

    Article  Google Scholar 

  8. H.L. Yang, P. He, and Y.C. Zhai: ISIJ Int., 2014, vol. 54, pp. 578–81.

    Article  Google Scholar 

  9. B.G. Thomas and X. Huang: 76 Th Steelmak. Conf., 1993, pp. 273–89.

  10. B. G. Thomas, X. Huang, and R. C. Sussman: Metall. Mater. Trans. B, 1994, vol. 25, pp. 527–47.

    Article  Google Scholar 

  11. C. Pfeiler, M. Wu, and A. Ludwig: Mater. Sci. Eng. A, 2005, vol. 413, pp. 115–20.

    Article  Google Scholar 

  12. 12 Yufeng Wang and Lifeng Zhang: Metall. Mater. Trans. B, 2011, vol. 42, pp. 1319–51.

    Article  Google Scholar 

  13. Q. Yuan, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 703–14.

    Article  Google Scholar 

  14. Q. Yuan: PhD Thesis, University of Illinois at Urbana-Champaign, 2004.

  15. S. Mahmood: MS Thesis, University of Illinois at Urbana-Champaign, 2006.

  16. 16 Lifeng Zhang and Yufeng Wang: JOM, 2012, vol. 64, pp. 1063–74.

    Article  Google Scholar 

  17. Brian G. Thomas, Quan Yuan, Sana Mahmood, Rui Liu, and Rajneesh Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45, pp. 22–35.

    Article  Google Scholar 

  18. V. Singh, S.K. Dash, J.S. Sunitha, S.K. Ajmani, and A.K. Das: ISIJ Int., 2006, vol. 46, pp. 210–18.

    Article  Google Scholar 

  19. Baokuan Li, Toshimitsu Okane, and Takateru Umeda: Metall. Mater. Trans. B, 2000, vol. 31, pp. 1491–1503.

    Article  Google Scholar 

  20. R. Sanchez-Perez, L. García-Demedices, J. PalafoxRamos, M. Diaz-Cruz, and R.D. Morales: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 85–99.

    Article  Google Scholar 

  21. Zhongqiu Liu, Fengsheng Qi, Baokuan Li, and Maofa Jiang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 933–52.

    Article  Google Scholar 

  22. R.C. Sussman, M.T. Burns, X. Huang, and B.G. Thomas: 10th Process Technol. Conf. Proc., Iron and Steel Society, Toronto, ON, 1992, pp. 291–304.

  23. Q. Yuan and B.G. Thomas: Third Int Congr. Sci. Technol. Steelmak., 2005, pp. 745–62.

  24. C. Pfeiler, B. G. Thomas, M. Wu, A. Ludwig, and A. Kharicha: Steel Res Int, 2008, vol. 79, pp. 599–607.

    Google Scholar 

  25. B.G. Thomas, A. Denissov, and H. Bai: Steelmak. Conf. Proc., Iron and Steel Society of AIME, 1997, pp. 375–84.

  26. 26 Zhong-qiu Liu, Bao-kuan Li, Mao-fa Jiang, and Fumitaka Tsukihashi: ISIJ Int., 2013, vol. 53, pp. 484–92.

    Article  Google Scholar 

  27. Eckhard Krepper, Dirk Lucas, Thomas Frank, Horst-Michael Prasser, and Phil J. Zwart: Nucl. Eng. Des., 2008, vol. 238, pp. 1690–1702.

    Article  Google Scholar 

  28. Hua Bai and Brian G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32, pp. 1143–59.

    Article  Google Scholar 

  29. C. Liu, Z. Luo, T. Zhang, D. Shen, W. Nan, and Z. Zou: J. Iron Steel Res. Int., 2014, vol. 21, pp. 403–07.

    Article  Google Scholar 

  30. R. C. Sussman, M. T. Burns, X. Huang, and B. G. Thomas: Iron Steelmak., 1993, vol. 20, pp. 14–16.

    Google Scholar 

  31. Zhongqiu Liu, Baokuan Li, and Maofa Jiang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 675–97.

    Article  Google Scholar 

  32. D.R. Uhlmann, B. Chalmers, and K.A. Jackson: J. Appl. Phys., 1964, vol. 35, pp. 2986–93.

    Article  Google Scholar 

  33. 33 Jürgen Pötschke and Volker Rogge: J. Cryst. Growth, 1989, vol. 94, pp. 726–38.

    Article  Google Scholar 

  34. 34 D. Shangguan, S. Ahuja, and D. M. Stefanescu: Metall. Trans. A, 1992, vol. 23, pp. 669–80.

    Article  Google Scholar 

  35. 35 D. M. Stefanescu and A. V. Catalina: ISIJ Int., 1998, vol. 38, pp. 503–5.

    Article  Google Scholar 

  36. 36 A. W. Rempel and M. G. Worster: J. Cryst. Growth, 1999, vol. 205, pp. 427–40.

    Article  Google Scholar 

  37. 37 Yan Wang, Martin Valdez, and Seetharaman Sridhar: Z. Für Met., 2002, vol. 93, pp. 12–20.

    Article  Google Scholar 

  38. 38 J. W. Garvin, Y. Yang, and H. S. Udaykumar: Int. J. Heat Mass Transf., 2007, vol. 50, pp. 2969–80.

    Article  Google Scholar 

  39. JCT Kao, AA Golovin, and SH Davis: J. Fluid Mech., 2009, vol. 625, pp. 299–320.

    Article  Google Scholar 

  40. R. Liu, J. Sengupta, D. Crosbie, S. Chung, M. Trinh, and B.G. Thomas: Sens. Sampl. Simul. Process Control, Wiley, San Diego, 2011.

  41. ANSYS Inc.: ANSYS FLUENT 12.0 Theory Guide. ANSYS Inc, 2009.

  42. Q. Yuan, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 685–702.

    Article  Google Scholar 

  43. R. Liu: Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2015.

  44. B.E. Launder and B. I. Sharma: Lett. Heat Mass Transf., 1974, vol. 1, pp. 131–37.

    Article  Google Scholar 

  45. B.E. Launder and D.B. Spalding: Comput. Methods Appl. Mech. Eng., 1974, vol. 3, pp. 269–89.

    Article  Google Scholar 

  46. Go-Gi Lee, Brian G. Thomas, and Seon-Hyo Kim: Met. Mater. Int., 2010, vol. 16, pp. 501–6.

    Article  Google Scholar 

  47. R. Liu, S.-M. Cho, B.G. Thomas, and S.-H. Kim: Continuous Casting Consortium Annual Meeting, Presentation 02, University of Illinois at Urbana Champaign, August 16, 2015, private communication.

  48. S. Morsi and A.J. Alexander: J. Fluid Mech., 1972, vol. 55, pp. 193–208.

    Article  Google Scholar 

  49. S.N. Lekakh, V. Thapliyal, and K. Peaslee: 2013 AISTech Conf. Proc., Association for Iron & Steel Technology, Pittsburgh, PA, 2013.

Download references

Acknowledgments

The authors thank National Science Foundation (Grant No. CMMI 11-30882) and the Continuous Casting Consortium, University of Illinois, for support of this project. Thanks are also given to Baosteel, Shanghai, P.R. China, for providing the casting conditions and measurements. This research is also part of the Blue Waters sustained-petascale computing project at the National Center for Supercomputing Applications at the University of Illinois, which is supported by the National Science Foundation (Awards OCI-0725070 and ACI-1238993) and the State of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Thomas.

Additional information

Manuscript submitted September 28, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, K., Thomas, B.G. & Ruan, X. Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting. Metall Mater Trans B 47, 548–565 (2016). https://doi.org/10.1007/s11663-015-0525-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0525-5

Keywords

Navigation