Skip to main content
Log in

Bubble formation during horizontal gas injection into downward-flowing liquid

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Bubble formation during gas injection into turbulent downward-flowing water is studied using high-speed videos and mathematical models. The bubble size is determined during the initial stages of injection and is very important to turbulent multiphase flow in molten-metal processes. The effects of liquid velocity, gas-injection flow rate, injection hole diameter, and gas composition on the initial bubble-formation behavior have been investigated. Specifically, the bubble-shape evolution, contact angles, size, size range, and formation mode are measured. The bubble size is found to increase with increasing gas-injection flow rate and decreasing liquid velocity and is relatively independent of the gas injection hole size and gas composition. Bubble formation occurs in one of four different modes, depending on the liquid velocity and gas flow rate. Uniform-sized spherical bubbles form and detach from the gas injection hole in mode I for a low liquid speed and small gas flow rate. Modes III and IV occur for high-velocity liquid flows, where the injected gas elongates down along the wall and breaks up into uneven-sized bubbles. An analytical two-stage model is developed to predict the average bubble size, based on realistic force balances, and shows good agreement with measurements. Preliminary results of numerical simulations of bubble formation using a volume-of-fluid (VOF) model qualitatively match experimental observations, but more work is needed to reach a quantitative match. The analytical model is then used to estimate the size of the argon bubbles expected in liquid steel in tundish nozzles for conditions typical of continuous casting with a slide gate. The average argon bubble sizes generated in liquid steel are predicted to be larger than air bubbles in water for the same flow conditions. However, the differences lessen with increasing liquid velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

instantaneous equivalent bubble diameter (mm)

D N :

diameter of nozzle bore (mm)

d :

gas injection hole diameter (mm)

d :

subscript referring to instant of detachment, stage 2

e :

elongation factor, L/D

e :

subscript referring to end of expansion, stage 1

F B :

buoyancy force for a bubble (Newton)

F D :

drag force acting on a bubble from flowing liquid (Newton)

F s :

surface-tension force on a bubble (Newton)

F Sz :

vertical component of the surface-tension force on a bubble (Newton)

f :

frequency of bubble formation (s−1)

f θ :

contact-angle function, f θ=sin θ 0(cos θ−cos θ a )

L :

elongation length at instant of detachment,= e dDd (mm)

P b :

pressure in the bubble (Pascals)

P g :

gas-injection pressure in Eq. [28] (Pascals)

Q g :

gas-injection flow rate/hole (mL/s)

r :

horizontal radius of an ellipsoidal bubble (mm)

Rebub :

Reynolds number of a bubble, uD/v

t :

time during bubble formation

U :

average liquid velocity in the nozzle (m/s)

u :

liquid-velocity profile across the nozzle bore, u(y) (m/s)

ū :

average liquid velocity across the bubble (m/s)

V b :

bubble volume (equal to πD 3/6) (mL)

y, z :

horizontal and vertical coordinate directions (m)

μ g, μl :

molecular viscosity of the gas and liquid respectively (kg/ms)

θ 0 :

static contact angle (deg)

θ a, θr :

advancing and receding contact angles of a forming bubble, respectively (deg)

ρ g, ρl :

density of the gas and liquid, respectively (kg/m3)

σ :

liquid surface tension (Newton/m)

ν :

kinematic viscosity of the liquid,=μ ll (m2/s)

References

  1. N. Bessho, R. Yoda, T. Yamasaki, T. Fuji, T. Nozaki, and S. Takatori: Trans. ISS (Iron and Steelmaker), 1991, vol. 18 (4), pp. 39–44.

    CAS  Google Scholar 

  2. B.G. Thomas and X. Huang: 76th Steelmaking Conf. Dallas, TX, ISS, Warrendale, PA, 1993, vol. 76, pp. 273–89.

    Google Scholar 

  3. B.G. Thomas, X. Huang, and R.C. Sussman: Metall. Trans. B, 1994, vol. 25B, pp. 527–47.

    CAS  Google Scholar 

  4. B.G. Thomas, A. Dennisov, and H. Bai: 80th ISS Steelmaking Conf., Chicago, IL, 1997, ISS, Warrendale, PA, pp. 375–84.

    Google Scholar 

  5. J. Knoepke andM. Hubbard: 77th Steelmaking Conf., Washington, DC, 1994, ISS, Warrendale, PA, pp. 381–88.

    Google Scholar 

  6. L. Wang, H.-G. Lee, and P. Hayes: Iron Steel Inst. Jpn. Int., 1996, vol. 36 (1), pp. 7–16.

    CAS  Google Scholar 

  7. K. Tabata, T. Kakehi, and M. Terao: Shinagawa Technical Report No. 31, Shinagawa Refractries Co., Ltd., Japan, 1988.

    Google Scholar 

  8. M. Sano and K. Mori: Trans. JIM, 1976, vol. 17, pp. 344–52.

    Google Scholar 

  9. A. Thomas, S. Tu, and D. Janke: Steel Res., 1997, vol. 68 (5), pp. 198–200.

    Google Scholar 

  10. M. Sano, Y. Fujita, and K. Mori: Metall. Trans. B, 1976, vol. 7B, pp. 300–01.

    CAS  Google Scholar 

  11. M. Iguchi, H. Kawabata, K. Nakajima, and Z. Morita: Metall. Trans. B, 1995, vol. 26B, pp. 67–74.

    CAS  Google Scholar 

  12. G.A. Irons and R.I.L. Guthrie: Metall. Trans. B, 1978, vol. 9B pp. 101–10.

    CAS  Google Scholar 

  13. K.G. Davis, G.A. Irons, and R.I.L. Guthrie: Metall. Trans. B, 1978, vol. 9B, pp. 721–22.

    Google Scholar 

  14. M. Iguchi, T. Chihara, N. Takanashi, Y. Ogawa, N. Tokumitsu, and Z. Morita: Iron Steel Inst. Jpn. Int., 1995, vol. 35 (11), pp. 1354–61.

    CAS  Google Scholar 

  15. R.I.L. Guthrie: Engineering in Process Metallurgy, Clarendon Press, Oxford, United Kingdom, 1992, p. 457.

    Google Scholar 

  16. R. Kumar and N.R. Kuloor: in Advances in Chemical Engineering, Academic Press, New York, NY, 1970, vol. 8, pp. 255–368.

    Google Scholar 

  17. R. Clift, J.R. Grace, and M.E. Weber: Bubbles, Drops, and Particles, Academic Press, Inc., New York, NY, 1978.

    Google Scholar 

  18. H. Tsuge: Encyclopedia of Fluid Mechanics, Gulf Publishing Co., Houston, TX, 1986, vol. 3, pp. 191–232.

    Google Scholar 

  19. N. Rabiger and A. Vogelpohl: in Encyclopedia of Fluid Mechanics, Gulf Publishing Co., Houston, TX, 1986, vol. 3, pp. 58–88.

    Google Scholar 

  20. Z. Wang, K. Mukai, and D. Izu: Iron Steel Inst. Jpn. Int., 1999, vol. 39 (2), pp. 154–63.

    CAS  Google Scholar 

  21. J.F. Davidson and B.O.G. Schuler: Trans. Inst. Chem. Eng., 1960, vol. 38, pp. 335–42.

    CAS  Google Scholar 

  22. R. Kumar and N.R. Kuloor: Chem. Technol., 1967, vol. 19, p. 733.

    CAS  Google Scholar 

  23. W.V. Pinczewski: Chem. Eng. Sci., 1981, vol. 36, pp. 405–11.

    Article  CAS  Google Scholar 

  24. K. Terasaka and H. Tsuge: J. Chem. Eng. Jpn., 1990, vol. 23 (2), pp. 160–65.

    Article  CAS  Google Scholar 

  25. K. Terasaka and H. Tsuge: Chem. Eng. Sci., 1993, vol. 48 (19), pp. 3417–22.

    Article  CAS  Google Scholar 

  26. H. Tsuge, Y. Nakajima, and K. Terasaka: Chem. Eng. Sci., 1992, vol. 47 (13–14), pp. 3273–80.

    Article  CAS  Google Scholar 

  27. T. Hong, C. Zhu, and L.-S. Fan: 1996 ASME Fluids Division Conf., 1996, vol. FED 236, pp. 581–88.

    Google Scholar 

  28. C.W. Hirt and B.D. Nichols: J. Computational Phys., 1981, vol. 39, pp. 201–25.

    Article  Google Scholar 

  29. S.C. Chuang and V.W. Goldschmidt: J. Basic Eng., 1970, vol. 92, pp. 705–11.

    Google Scholar 

  30. Y. Kawase and J.J. Ulbrecht: Ind. Eng. Chem. Process Des. Dev., 1981, vol. 20 (4), pp. 636–40.

    Article  CAS  Google Scholar 

  31. I.B.V. Morgenstern and A. Mersmann: Germany Chem. Eng., 1982, vol. 5, pp. 374–79.

    Google Scholar 

  32. M. Burty, M. Larrecq, C. Pusse, and Y. Zbaczyniak: 13th PTD Conf., Nashville, TN, 1995, vol. 13, pp. 287–92.

  33. R.H.S. Winterton: Chem. Eng. Sci., 1972, vol. 27, pp. 1223–30.

    Article  CAS  Google Scholar 

  34. R.H.F. Pao: Fluid Dynamics, Merrill, New York, NY, 1967.

    Google Scholar 

  35. H. Bai: Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2000.

    Google Scholar 

  36. S.L. Soo: Multiphase Fluid Dynamics, Science Press, Gower, Beijing, 1990.

    Google Scholar 

  37. B.E. Launder and D.B. Spalding: Comp. Meth. Appl. Mech. Eng., 1974, vol. 13, pp. 269–89.

    Article  Google Scholar 

  38. FLOW-3D User’s Manual, Flow Science Inc., Los Alamos, NM, 1997.

  39. L. Jimbo, A. Sharan, and A.W. Cramb: 76th SteelMaking Conf., Dallas, TX, 1993, ISS, Warrendale, PA, pp. 485–94.

    Google Scholar 

  40. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, H., Thomas, B.G. Bubble formation during horizontal gas injection into downward-flowing liquid. Metall Mater Trans B 32, 1143–1159 (2001). https://doi.org/10.1007/s11663-001-0102-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-001-0102-y

Keywords

Navigation